Main site of science textbooks
Crowdfunding site for the free
online science textbooks project
Drones and flying cars
Dr. Jay Maron


Flight time

A electric propeller-driven aircraft can hover for more than an hour. The hovering time is determined by the battery energy per mass and by the rotor radius. Example values:

Drone mass         =  M          =  1.0  kg
Battery mass       =  m          =   .5  kg
Battery energy/mass=  e  =  E/m  =   .8  MJoules/kg
Battery energy     =  E          =   .4  MJoules
Hover power/mass   =  p  =  P/M  =   94  Watts/kg     (Hover power for a 1 kg drone with a 1/4 meter radius rotor)
Hover power        =  P  =  p M  =   94  Watts
Flight time        =  T  =  E/P  = 3990  seconds  =  66 minutes
The flight time is
T  =  (e/p)⋅(m/M)

Hovering power per mass

The power per mass required to hover is determined by the physics of rotors. For a 1 kg vehicle with a 1/4 meter radius rotor,

Mass               =  M  =  1    kg
Gravity constant   =  g  =  9.8  meters/second
Rotor radius       =  R  =   .25 meters
Rotor quality      =  q  =  1.3
Hover power/mass   =  p  =  M½ g3/2 q-1  R-1  =  94 Watts
The rotor radius scales as M1/3 and the hover power/mass scales as M1/6. If we scale the above vehicle from 1 kg up to 300 kg (the mass of a 1-person vehicle) the hovering power/mass is 240 Watts/kg and the total power is 73 kWatts, or 98 horsepower.
Battery types
              Energy/Mass  Power/Mass  Recharge  Year  Anode  Cathode   Market fraction of
               MJoule/kg    Watt/kg                                     Lithium-ion batteries

Lithium air          6.12               No     Future  Li    O2
Aluminum air         4.68     200       No     1970    Al    O2
Lithium thionyl      2.00     700       No     1973    Li    SOCl2
Zinc air             1.59               No     1932    Zn    O2
Lithium-ion sulfur   1.44     670       Yes    Future  Li    S               0
Lithium metal        1.01     400       No     1976    Li    MnO2
Lithium-ion CoNiAlO2  .79               Yes    1999    Li    CoNiAlO2         .10
Lithium-ion CoNiMnO2  .74    1200       Yes    2008    Li    CoNiMnO2         .29
Lithium-ion CoO2      .70     200       Yes    1991    Li    CoO2             .29
Lithium-ion Mn2O4     .54    1200       Yes    1999    Li    Mn2O4            .10
Lithium-ion FePO4     .47    1200       Yes    1996    Li    FePO4            .22
Alkaline              .40               Yes    1992    Zn    MnO2
NiMH                  .34    1000       Yes    1990    MH    NiO(OH)
Lead acid             .15     180       Yes    1881    Pb    PbO2
NiCd                  .14     200       Yes    1960    Cd    NiO(OH)

Hovering drones

                Drone  Battery  Drone  Battery  Battery  Drone  Drone  Flight  Price  Wireless
                mass   energy           mass             power          time           range
                 kg    MJoule   MJ/kg    kg      MJ/kg   Watt    W/kg  minutes   $      km

Mota Jetjat Nano .011    .00160  .145                     3.3    303      8      40    .02
ByRobot Fighter  .030    .0040   .133                     6.7    222     10     120    .1
Blade mQX        .0751   .0067   .089                    11.2    149     10     115
XDrone Zepto     .082    .0067   .081                     4.6     56     24      40    .05
Walkera QR Y100  .146    .0213   .146   .0413    .52     17.8    122     20     100    .1
MJX Bugs 3       .485    .0480   .099                    44.4     92     18     100    .5
DJI Mavic Pro    .725    .157    .217   .24      .65    109      150     24    1000   7.0
XK Detect X380C 1.18     .216    .183                   120      102     30     522   1.0
Xiaomi Mi       1.376    .319    .214                   197      143     27     380   1.0
DJI Phantom 4   1.38     .293    .212   .426     .69    174      126     28    1000   5.0
XK X500         1.8      .288    .160                   160       89     30     303   1.0
JYU Spider X    2.1      .360    .171   .812     .44    200       95     30     155   4.0
MD4-1000        2.65    1.039    .392                   197       74     88    2000    .5
DJI Inspire     2.935    .360    .123   .67      .54    333      114     18    2000   7.0
Altura Zenith   3.5     1.327    .379                   491      140     45    2000   1.0
Walkera QR X800 3.9      .799    .205  1.134     .70    222       57     60    2700   2.0
AEE F100        6.0     1.598    .266                   380       63     70   58000  10.0
Chaos HL48      6.8     1.758    .259                   651       96     45   20000  20.0
MD4-3000       10.4     2.80     .269                  1037      100     45           4.0
Ehang 184     200      51.8      .259                 37500      188     23  300000   3.5

1 MJ = 1 MJoule = 106 Joules

Electric power outperformes gasoline power in all categories except energy density. Electric motors are lighter, simpler, cheaper, more flexible, and more reliable than combustion motors.


Fixed-wing drones
            Drone  Battery  Drone  Drone  Drone  Flight  Cost  Wireless  Wing  Wing  Cruise   Max   Flight
            mass   energy    E/M   power          time          range    area  span  speed   speed  range
             kg    MJoule   MJ/kg  Watts  W/kg   minutes  $       km      m2    m     m/s     m/s    km

Sky Hawk       .355  .0346  .097    19.2  54.1     30     400    1.0           1.0
Chaipirinha    .62   .088   .142                          154                   .85
AgDrone       2.25   .639   .284   161    71.7     66            4.5            .124  46.7     82    50
Trimble UX5   2.5    .320   .128   107    42.7     50   10000    2.5     .34    .10   80             60
Airbus E-Fan 450  104.4     .232 29000    64.4     60                          9.5    44.4     61.1 160
Sun Flyer   1225

Flying electric cars

The properties of a flying car are determined by the properties of propellers and lithium-ion batteries. Typical parameters for a 1-person car are:

Hovering time      =   25 minutes
Cruise speed       =  100 meters/second
Range              =  155 km
Hovering power     =   40 kWatts
Vehicle mass       =  320 kg
Battery energy/mass=   .8 MJoules/kg
Battery power/mass = 1200 Watts/kg
Battery cost/MJoule=  100 $/MJoule
Battery mass       =   80 kg
Battery energy     =   64 MJoules
Battery power      =   96 kWatts
Battery cost       = 6400 $

For hovering, the more rotors the better. The hovering time scales as rotor number to the 1/6 power. Adding rotors also increases stability and failsafe.


Power

For a typical drone,

Drone mass             =  M
Battery mass           =  Mbat
Payload mass           =  Mpay
Climbing speed         =  Vcli
Max horizontal speed   =  Vmax
Hover constant         =  H            =  60 Watts/kg       Power/mass required to hover
Hover power            =  Phov=  H M
Hover power for payload=  Ppay=  H Mpay
Gravity constant       =  g            =  9.8 m/s
Power to climb         =  Pcli=  M g V
Drag coefficient       =  C
Air density            =  D            = 1.22 kg/meter3
Drone cross-section    =  A
Drag power             =  Pdrag= ½ C D A V3
If the climbing power is equal to the hover power,
V = H / g  =  6 meters/second
If the climbing power is equal to the drag power,
M g V = ½ C D A V3

V  =  [2Mg/(CDA)]½  =  4.0 [M/(CA)]½ meters/second
              Drone  Battery  Load   Hover  Load  Climb   Power   P/M  Climb Speed  Thrust
               kg      kg      kg    Watt   Watt  Watt    Watt    W/kg  m/s   m/s   Newtons

Nihui NH-010     .0168  .0047    -       6.7                 6.7  1426   -     -
Walkera QR Y100  .146   .0413    -      17.8         35.5   53.3  1291   -     -
DJI Mavic Pro    .725   .24      -     109                 109     454   5    18
DJI Phantom 4   1.38    .426     .462  174    58     81    232     545   6    20
JYU Spider X    2.1     .812    2.3    200   219    103    419     516   5     8
MD4-1000        2.65            1.2    197    89    195    286           7.5  12     118
DJI Inspire 1   2.935   .67     1.7    333   193    144    526     785   5    22
AEE F100        6.0             2.5    300                 380                28
Chaos HL48      6.8             6.8    651   651          1302
MD4-3000       10.4             4.6   1037         1019   1496          10           280
Ehang         200             100    37500                                    28

Drone   kg     Drone mass without payload
Battery kg     Battery mass
Load    kg     Maximum payload for hovering
Hover   Watt   Power required to hover without payload
Load    Watt   Power used for the payload only
Climb   Watt   Climbing power  =  Mass * ClimbVelocity * Gravityconstant
Power   Watt   Total power  =  Hover power + Load power
P/M     W/kg   Power/Mass for the battery
Climb   m/s    Maximum climbing speed
Speed   m/s    Maximum horizontal speed
Thrust  Newton Maximum thrust
The JYU Spider X has the largest value for (payload mass) / (drone mass). The battery power/mass is
Battery power/mass  =  Phov ⋅ (M + Mpay) / M / Mbat  =  516 Watts/kg

Lithium-ion batteries

The properties of the best commercial lithium ion batteries are:

Energy/Mass     =    .8  Joule/kg
Power/Mass      =  1200  Watt/kg
Energy/$        =    .01 MJoule/kg
Density         =   3.5  gram/cm3
Recharges       =1000
Shelf life      =   1.0  year
Voltage         =   3.7  Volt
Energy/Mass and Power/Mass are an engineering tradeoff. One can be increased at the expense of the other.
Battery energy and power

Voltage          =  V         Volts
Charge           =  C         Coulombs
Time             =  T         seconds
Electric current =  I  = C/T  Amperes (Amps)
Electric power   =  P  =  VI  Watts
Energy           =  E  =  PT  Joules
                       =  CV  Joules
Battery energy is often given in "Watt hours" or "Ampere hours".

1 Watt hour = 3600 Joules = 1 Watt * 3600 seconds

1 Amp hour = 3600 Coulombs = 1 Coulombs/second * 3600 seconds

A battery with a voltage of 3.7 Volts that delivers 1 Ampere for 1 hour has an energy of
Energy = 1 Ampere * 3.7 Volts * 3600 seconds = 13320 Joules


Battery sizes

Energies and powers are for lithium batteries, which have a voltage of 3.7 Volts. The "ID #" is often used instead of cell size.

Cell        Energy  Power  Current  Mass  Diameter  Length  Charge   Price    ID #
size        kJoule  Watt   Ampere   gram     mm       mm    AmpHour    $

D            107     220     60     138      32       67     8.0      13      32650
C             67     220     60      92      26       50     5.0       8      26650, 25500
B             58     160     45      72      22       60     4.5       5      21700, 20700
A             47     110     30      49      18       50     3.5       3      18650
AA             9      22      6      15      14       53      .70      1      14500
AAA            4.7    11      3       7.6    10       44      .35       .5    10440
AAAA           2.3     6      1.5     3.8     8       42      .17       .25   75400
CR2032         3.                                                             Most common button cell
CR1216          .33                                                           Smallest button cell

Apple Watch 4  4.0                                            .29
iPhoneXR 6"   41                                             2.94             Machine = .194 kg
iPhoneXSM 6"  44                                             3.17             Machine = .208 kg
iPhoneXS 6"   36                                             2.66             Machine = .177 kg
iPhone8+ 6"   27                                             2.79             Machine = .202 kg
iPhone8  5"   25                                             1.82             Machine = .148 kg
iPhone7+ 6"   40                                             2.90             Machine = .188 kg
iPhone7  5"   27                                             1.96             Machine = .138 kg
iPad Mini 8"  70                                             5.12             Machine = .30  kg
iPad Pro 10" 111                                             8.13             Machine = .47  kg
Mac Air 11"  137                                                              Machine = 1.08 kg
Mac Air 13"  194                                                              Machine = 1.34 kg
MacBook 12"  149                                                              Machine =  .92 kg
Mac Pro 13"  209                                                              Machine = 1.37 kg
Mac Pro 15"  301                                                              Machine = 1.83 kg

              Energy  Power  Lifetime
              kJoule  Watts   hours

iPhone 8  5"    25     .50    14
iPhone 8+ 6"    27     .54    14
iPad Mini 8"    70    1.9     10
iPad Pro 10"   111    3.1     10
Mac Air  11"   137    3.8     10
Mac Air  13"   194    5.4     10
Mac Pro  13"   209    5.8     10
Mac Pro  15"   301    8.4     10

Battery packs

A single battery is a "cell" and a set of cells is a "pack". Packs are used to multiply the energy and power of cells.

Battery packs are notorous for catching fire, but cell technology has reached the point where it's now possible to make safe battery packs, and the design is simple enough so that anyone can construct their own packs.

Cells can be combined in series and/or parallel. Connecting in series multiples voltage, and voltage is helpful for achieving high power in a motor.

Connecting in series is easier than in parallel. If it's possible to achieve the required power without parallelization then one should do so, and this is usually possible with modern cells.

Series packs have the advantage that the cells can easily be extracted and charged individually, and cells can be interchanged between packs. One can also construct a set of series packs and swap them in like gun clips.

High power electric bikes use a voltage of 72 Volts. If we use one series array of C cells then a pack provides 4440 Watts and 1.2 MJoules. Any electric device requiring less than this much power can be powered by a series pack.

The properties of a modern high-power cell are:

Type         =  "C"
Voltage      =   3.7 Volts
Energy       =  60   kJoules
Power        = 155   Watts
Mass         =  92   grams
Energy/mass  = 650   kJoules/kg
Power/mass   =1680   Watts/kg
Current      =  42   Amperes
Manufacturer = "Basen"
When the cells are connected in series the values for voltage and power are:
Cells   Voltage    Power
         Volts     kWatts

   1      3.7        .15
   2      7.4        .30
   3     11          .45     Electric kick scooter
   4     15          .60
   6     24          .90     Electric bike
  10     36         1.5
  20     72         3.0      Compact electric car
  96    356        15.0      Large electric car

Commercial lithium batteries

           Size   Charge  Current  Price
                 Amphours  Amps      $

Basen        C     4.5      60     8.0
Panasonic    B     4.0      15     8.0
Sony VTC6    A     3.0      30     8.0
Panasonic    A     3.5      10     5.5
Efest IMR    AA     .65      6.5   3.5
Efest IMR    AAA    .35      3     3.0
Prices from www.liionwholesale.com
Hovering flight

Hovering propeller

For propellers,

Rotor radius     =  R
Air density      =  D  =  1.22 kg/meter3 at sea level
Rotor tip speed  =  V
Rotor width param=  Cr
Rotor lift force =  F =  D Cr R2 V2
Rotor drag force =  F
Rotor lift/drag  =  Qr =  F / F
Rotor power      =  P  =  F V  =  F V / Qr
Rotor force/power=  Z  =  F/ P
                       =  Qr / V
                       =  R F D½ Cr½ Qr
                       =  R F D½ qr
Rotor quality    =  qr =  Qr Cr½
The physical parameters of a propeller are {Qr,Cr,qr}, with typical values of
Qr = 5.5
Cr =  .045
qr = 1.17
Most propellers have 2 blades and some have 3. If there are 4 or more blades then qr declines.

The parameters are not independent. They're related through the blade aspect ratio.

K  ≈  Aspect ratio
Cr ≈  K
Qr ≈  K
qr ≈  K½

Hovering time
Aircraft mass        =  M
Gravity              =  g
Aircraft force       =  F =  M g
Rotor radius         =  R                  ~  M1/3
Hovering force/power =  Z  =  qr D½ R F  ~  M-1/6
Hovering power/mass  =  p  =  g / Z        ~  M1/6
Aircraft energy/mass =  e                  ~  M0
Hovering time        =  T  =  e / p        ~  M-1/6

Drive propeller

A drive propeller has to move substantially faster than the aircraft to be effective. This distinguishes it from a hovering propeller, which is designed to minimze propeller speed.

Rotor radius      =  R
Air density       =  D  =  1.22 kg/meter3
Aircraft speed    =  U
Rotor speed coef. =  s
Rotor tip speed   =  V  =  s U
Rotor lift force  =  F
Rotor drag force  =  F
Rotor lift/drag   =  Qr =  F / F
Rotor power       =  P  =  F V  =  F V / Q
Rotor force/power =  Z  =  Q / V
Typically, Q ~ 5.5 and s ~ 3.
Power/Mass ratio

A commonly-appearing quantity is the power/mass ratio, which is inversely proportional to the force/power ratio.

Mass              =  M
Gravity           =  g
Rotor quality     =  q
Hover force       =  F  =  M g
Hover power       =  P
Force/Power ratio =  Z  =  F/P
Power/Mass ratio  =  p  =  P/M  =  g/Z

Typical parameters
Air density       =  Dair=  1.22
Seawater density  =  Dwater= 1025
Gravity           =  g   =  9.8     meters/second2
Wing drag coef.   =  Cw  =   .03
Wing Lift/drag    =  Qw  =  7
Rotor lift/drag   =  Qr  =  5.5
Rotor width param =  Cr  =   .045
Rotor quality     =  qr  =  1.17  =  Qr Cr½
Rotor force/power =  Zr
Rotor agility     =  pr  =  g/Zr
Wing agility      =  pw

Propeller-driven level flight
Aircraft mass        =  M
Gravity              =  g
Air density          =  D  =  1.22 kg/meter3
Aircraft speed       =  U
Rotor speed coef.    =  s
Rotor tip speed      =  V  =  s U
Aircraft lift force  =  F  =  M g
Rotor lift force     =  F
Wing lift/drag       =  Qw =  F / F
Rotor drag force     =  F
Rotor lift/drag      =  Qr =  F / F
Rotor power          =  P  =  F V  =  F V / Qr  =  F V / (Qr Qw)
Aircraft force/power =  Z  =  F / P  =  [Qr Qw / s] / U
There is a tradeoff between Qr and s.
Main page

Support the free online science textbooks project






© Jason Maron, all rights reserved.