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ABSTRACT

We present an algorithm for simulating the equations of ideal magnetohydrodynamics and other systems of
differential equations on an unstructured set of points represented by sample particles. Local, third-order, least-
squares, polynomial interpolations (Moving Least Squares interpolations) are calculated from the field values of
neighboring particles to obtain field values and spatial derivatives at the particle position. Field values and particle
positions are advanced in time with a second-order predictor-corrector scheme. The particles move with the fluid,
so the time step is not limited by the Eulerian Courant–Friedrichs–Lewy condition. Full spatial adaptivity is
implemented to ensure the particles fill the computational volume, which gives the algorithm substantial flexibility
and power. A target resolution is specified for each point in space, with particles being added and deleted as needed
to meet this target. Particle addition and deletion is based on a local void and clump detection algorithm. Dynamic
artificial viscosity fields provide stability to the integration. The resulting algorithm provides a robust solution for
modeling flows that require Lagrangian or adaptive discretizations to resolve. This paper derives and documents
the Phurbas algorithm as implemented in Phurbas version 1.1. A following paper presents the implementation and
test problem results.
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1. INTRODUCTION

1.1. Context

Our understanding of many astrophysical systems relies on
the simulation of magnetized plasmas. As a result, much effort
has been made to develop tools to efficiently perform high-
fidelity simulations of them. Some of these tools have found
broad application in other fields of physics and engineering as
well.

Many early methods for solving the equations of magneto-
hydrodynamics (MHD) were based on fixed grids. Discretizing
the equations of hydrodynamics or MHD on a fixed grid leads
to an Eulerian method, or a method written in terms of Eule-
rian derivatives. Popular publicly available codes with methods
based on point values such as the Pencil Code3 (Brandenburg
& Dobler 2002) and finite volumes, such as ZEUS (Hayes et al.
2006), FLASH (Fryxell et al. 2000), or Athena (Stone et al.
2008), use such methods. Eulerian methods share the common
property that the discretized form of the governing equations is
not Galilean invariant. Though they still converge to the correct
solution, this does lead to two limitations at any finite resolu-
tion. First, the explicit integration time step constraint from the
Courant–Friedrichs–Lewy (CFL) condition depends on both the
signal speed and the flow velocity relative to the grid, not just
the signal speed. Second, the numerical diffusion of the scheme,
usually highly nonlinear, also depends on the flow velocity rel-
ative to the grid.

A fixed grid approach thus has disadvantages particularly
where there are high-velocity bulk flows, collapsing flows, or

1 Current address: North Carolina Museum of Natural Sciences, Raleigh, NC,
USA.
2 Also at Department of Astronomy, Columbia University, New York, NY,
USA.
3 See http://www.nordita.org/software/pencil-code/

flows that generate localized fine structure. For the latter cases,
adaptive mesh refinement (Berger & Oliger 1984) has been a
successful approach. This method, while still Eulerian, uses
refined meshes to allow the spatial and temporal resolution to
vary. However, for problems with significant bulk flows, it is
of no help, as the same problems of time step limitation and
numerical diffusion apply as with uniform grids. A numerical
viscosity dependent on the bulk flow can be significant, because
the growth of instabilities from a marginally resolved mode in
a method lacking Galilean invariance will depend on the bulk
velocity of the flow across this grid. The effects of this can be
seen, for example, in Chiang (2008) and Johansen et al. (2009).
To circumvent the time step limit in disks treated with cylindrical
or spherical coordinates or in a shearing-sheet approximation
where the bulk flow is largely Keplerian and aligned with the
grid, it is possible to add a separate transport step to the method
(Masset 2000). While this extra transport step improves the
problems with numerical diffusion, it does not fully cure the
issue (Johansen et al. 2009; Stone & Gardiner 2010).

To escape these limits, it is necessary to move to a method
formulated in terms of Lagrangian (also known as covariant, co-
moving, convective, advective, substantive, or material) deriva-
tives.4 In contrast to Eulerian formulations, Lagrangian methods
have three advantages. Foremost, for problems with significant
bulk flows, a purely Lagrangian formulation has a significantly
less stringent time step constraint from the signal speed (the
CFL condition). This is because the time step in an Eulerian
method depends on the maximum of the signal speed and the
flow speed, whereas in a purely Lagrangian method the time step
depends only on the local signal speed. Relaxing this constraint
becomes particularly important in the case of an extended disk

4 Methods that solve Eulerian problems in a local frame chosen to be
comoving with the fluid in a locally average sense also share in some of the
advantages of this formulation.
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with supersonic differential rotation, where in an Eulerian for-
mulation the quickly orbiting inner regions constrain the time
step severely. A second advantage of a Lagrangian method lies
in the Galilean invariance of the inevitable effects of numer-
ical diffusion. Though Galilean invariance itself can formally
be achieved in an Eulerian method (Springel 2010; Robertson
et al. 2010), a Lagrangian formulation can reduce the diffusiv-
ity further because it uses fewer time steps. Finally, Lagrangian
methods naturally focus resolution into regions of fluid con-
centration, which are often, though not always, the regions of
greatest interest. (We note that the adaptive, Lagrangian method
we describe here can also focus resolution to other, arbitrary
regions of interest.)

It is possible to write a comoving discretization in two ways.
First, one can discretize the governing equations directly in
terms of Lagrangian time derivatives. Second, one can discretize
in terms of partial time derivatives around moving interfaces.
Historically, the most popular approach has been the first,
particularly when used to build a meshless method. Recently,
the second has been used, with techniques based on a moving
unstructured mesh with mesh reconnection.

One of the earliest and most popular meshless schemes is
smoothed particle hydrodynamics (SPH; Lucy 1977; Gingold
& Monaghan 1977). SPH quickly gained popularity as the ad-
vantages in numerical diffusion, local resolution scales, and
local time step advantages were realized (Steinmetz & Mueller
1993). However, the basic SPH algorithm has many shortcom-
ings. The foremost and most fundamental is the lack of discrete,
zeroth-order consistency in the SPH representation of a function.
SPH interpolation fails to reproduce even a constant function.
The importance of this consistency property in general mesh-
less schemes has been pointed out by Liu et al. (1995). This
insight has been applied to analysis of SPH by Dilts (1999),
Liu et al. (2003), Fries & Matthies (2004), and Quinlan et al.
(2006), among others. They find that the lack of zeroth-order
consistency can cause substantial gradient and value errors that
do not converge with increased particle number alone. The in-
ability of SPH to effectively model subsonic turbulence has been
blamed on this lack of consistency by Bauer & Springel (2011),
though the behavior in this regime depends strongly on and can
be significantly improved by using a more modern formulation
of the SPH artificial viscosity (Price 2012a).

Resolution in SPH is further limited by constant particle
masses. Some attempts at adaptive particle masses have been
made (Kitsionas & Whitworth 2002) but these suffer from dif-
ficulties in specifying a well-posed scheme. SPH in general
handles differing particle masses poorly, as the pairwise inter-
particle interactions allow heavy particles to penetrate though
the fluid in a nonphysical manner. Similarly, the spatial resolu-
tion in SPH is locally isotropic, even when the particle and mass
distribution is anisotropic. Attempting to relax this constraint
leads to the adaptive SPH scheme of Shapiro et al. (1996) and
Owen et al. (1998).

A grid that is both Lagrangian and has a logically Cartesian
structure is a simple choice, and a logically Cartesian moving
(Lagrangian) mesh has also been used to attempt to minimize nu-
merical diffusion (Norman et al. 1980; Fiedler & Mouschovias
1992). Gnedin (1995) and Pen (1998) used a moving, logically
Cartesian mesh to provide adaptivity in collapsing flows. How-
ever, this approach falls victim to several limits. In many flows
the cells eventually become long and thin, leading to large er-
rors. Also, the grid cannot follow rotation or turbulent flows as
it becomes tangled.

Unstructured, moving mesh methods with mesh reconnection
have recently been introduced in astrophysics. The methods of
Springel (2010), Pakmor et al. (2011), Duffell & MacFadyen
(2011), and Gaburov et al. (2012) are finite volume methods
based on Voronoi tessellations. The mesh is defined by the
Voronoi tessellation of a set of points that move approximately
with the mean motion of the fluid in the cell (though formally
any motion can be chosen). These methods can be described as
Lagrangian though they calculate intercell fluxes with Eulerian
Riemann problems stated in a locally comoving frame. The
connectivity of the mesh is dictated by the Voronoi neighbor
relation. Fluxes between cells are calculated across the moving
cell faces. Springel (2010) and Pakmor et al. (2011) describe a
Galilean invariant method. The method of Duffell & MacFadyen
(2011) is not fully Galilean invariant, but this is due to the
formulation chosen for the slightly more complicated relativistic
hydrodynamic equations. Both methods use an approximately
comoving formulation in a significant sense.

This paper describes an adaptive, Lagrangian, meshless,
collocation scheme for MHD or similar sets of equations
based on a point (not finite volume or mass) discretization. In
what follows, we refer to the discretization points as particles,
following the historical usage. However, these discretization
points do not in any sense represent identifiable masses or
volumes of the fluid. They are simply moving points sampling
continuous field variables.

In the next subsection we discuss prior work on related
methods to solve the MHD equations. We then describe our
algorithm, starting with an overview (Section 2) and then
discussing specific numerical aspects, such as the modeling of
the function and the time update (Section 3), adaptive addition
and deletion of particles (Section 4), explicit time step limits
(Section 5), and magnetic divergence correction (Section 6.2).
Finally we draw these together with a summary of the algorithm
(Section 7). In the next paper of this series (McNally et al.
2012, hereafter Paper II) we present implementation details and
present the results of a suite of gas dynamical and MHD tests
of the algorithm.

1.2. Prior MHD Methods

Several attempts have been made to design an SPH-type
scheme for MHD. The most successful and recent work by Price
& Monaghan (2004a, 2004b, 2005) and Price (2010) resulted
in an SPH MHD based on a form of the MHD equations that
is consistent with ∇ · B �= 0 and a set of artificial dissipation
terms. Rosswog & Price (2007) developed a variation based on
representing the magnetic fields though Euler angles, which
allows a guaranteed ∇ · B = 0 at the cost of disallowing
tangled field geometries (Brandenburg 2010), severely limiting
its applicability. Dolag & Stasyszyn (2009) implement an SPH
MHD in GADGET-3, without any constraint on ∇ · B, but
subtracting the numerical contribution of ∇·B to the momentum
equation. We refer the reader to Price (2012b) for a further
overview of the attempts to design an SPH MHD method.

Unfortunately, all these SPH MHD methods suffer from
the fundamental drawback of SPH, that the SPH interpolant
does not have a zeroth-order consistency property. This zeroth-
order inconsistency means that for a disordered set of SPH
particles, a constant function cannot be reproduced by the SPH
representation of that function. As the SPH representation of
even a constant function has significant positive and negative
errors, it also has significantly non-zero derivatives. These errors
make formulating an SPH MHD difficult. Modifications of SPH
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to solve or work around the zeroth-order consistency problem
have been proposed. Børve et al. (2001, 2006) developed an
extension to SPH using a remapping strategy to increase the
accuracy of SPH estimates through regularizing the particle
distribution, and applied it to MHD shocks. For hydrodynamics,
Morris (1996) and Abel (2011) have proposed working around
the effects of the zeroth-order consistency problem for pressure
forces only, with an alternative derivation of the SPH pressure
force. This comes at the price of sacrificing the local momentum
conservation enjoyed by the classical formulation. This also only
treats the problem of spurious pressure forces arising from the
zeroth-order inconsistency, and does not lead to a consistent
interpolation of the pressure field or other fields.

It is also possible to construct an SPH MHD scheme us-
ing a Godunov approach. Godunov SPH was originally pro-
posed for hydrodynamics, using Riemann problems to solve for
the particle interactions. Godunov SPH uses SPH interpolation
for density (see Equations (6) and (21) of Inutsuka 2002, and
Equation (29) of Iwasaki & Inutsuka 2011).5 A Godunov SPH
MHD implementation using Powell-type source terms and a ten-
sile correction was implemented by Iwasaki & Inutsuka (2011).
They point out that all SPH-based MHD schemes that avoid
tensile instability do not exactly conserve momentum, energy,
or both. Similarly, Gaburov & Nitadori (2011) constructed an
SPH-like scheme (a weighted particle method) with a consis-
tent second-order accurate formulation for derivatives, coupling
this with a pairwise Riemann-solver based interaction between
particles to yield an MHD scheme. A Galilean invariant form of
the Dedner et al. (2002) hyperbolic–parabolic cleaning scheme
was used to handle ∇· B errors.

However, these SPH-based methods again suffer from the
zeroth-order inconsistency of the SPH interpolant, even though
methods with a renormalized first derivative estimate have a con-
sistent first derivative. This means that SPH interpolated fields
(such as the density values) have significant noise. To reduce the
amplitude of the noise it is necessary to increase the number of
neighbors used in the kernel, which greatly increases the com-
putational cost. This means that rigorous convergence studies,
even in smooth flow, are not feasible with methods based on
SPH-type estimates. In addition, SPH Riemann methods suffer
a higher computational cost in comparison to moving unstruc-
tured mesh Godunov schemes, because of the requirement of a
much higher number of Riemann problem solutions per particle.

Duffell & MacFadyen (2011) implemented an MHD scheme
in their Voronoi tessellation method, using a Dedner-type
hyperbolic divergence cleaning method, but found it difficult to
manage ∇· B errors when the mesh topology changes. Pakmor
et al. (2011) used a very similar approach, with apparently much
greater success in managing ∇· B errors. Gaburov et al. (2012)
add a source term to the induction equation to restore Galilean
invariance if ∇· B �= 0 and claim this greatly improves stability.

The method we describe here was inspired by the Gradi-
ent Particle Method of Maron & Howes (2003), but removes
the underlying instability present in that method (described in
Appendix A). A method particularly similar to Maron & Howes
(2003), but limited to hydrodynamics using a moving-least-
squares fit was proposed by Dilts (1999, 2000). Numerous re-
lated methods have been described in the literature on meshfree
or meshless methods. The most closely related method is the Fi-
nite Pointset Method (FPM) described by Kuhnert (1999, 2002),

5 An earlier usage of Riemann solvers coupled with SPH is given by
Parshikov et al. (2000).

which is not to be confused with either the similarly named Fi-
nite Point Method of Oñate et al. (1996), or the equally similarly
named Finite Particle Method of Liu et al. (2005).6 FPM has
limited adaptivity, is first order, and uses an upwinded formula-
tion for hydrodynamics. Similar to the method we describe, it
is meshless, Lagrangian, has particle addition and deletion, and
uses moving-least-squares interpolation.

2. ALGORITHM

For specificity, we focus on using our method to solve the
equations of MHD. These can be expressed using Lagrangian
time derivatives Dt, as

DtVj = −ρ−1∂jP + ρ−1εjabεacd (∂cBd )Bb + Gj, (1)

DtBj = Bi∂iVj − Bj∂iVi, (2)

Dtσ = −(σ + P )∂iVi, (3)

Dtρ = −ρ∂iVi, (4)

where V is the velocity, B is the magnetic field, σ is the internal
energy volume density, P is the pressure, ρ is the density, Gj is a
vector component of a body force, and the Einstein summation
rule is assumed. We note that Phurbas is relatively insensitive
to the exact form of the equations solved and variables chosen.
For example, energy variables other than the internal energy per
volume could be used. In Appendix C we give the second time
derivatives of these equations for use in the time update. These
equations require the addition of an equation of state, such as
a gamma-law P = (γ − 1)σ , though the equation of state is
arbitrary.

The MHD Equations (1)–(4) are solved on an adaptive set
of particles, each particle carrying values for the field variables
ρ, V, B, and σ . Particles move in the frame of the fluid with the
local fluid velocity V. Field variables evolve in the frame of the
particle, so the evolution equations are most naturally expressed
using the Lagrangian form for the time derivatives in the MHD
equations.

The equations of MHD as stated are ill-suited to the numeri-
cal scheme we will use. For the discretization used in Phurbas,
we require a system of equations in which short wavelength
perturbations decay. Appendix A demonstrates this for a model
advection-diffusion equation. To ensure decay of such pertur-
bations, we introduce artificial dissipation terms to the analytic
form of the equations before discretizing. These modifications
are in the form of a bulk viscosity, and mass and thermal dif-
fusions. Formally, it is this modified version of the MHD equa-
tions from which Phurbas computes approximate numerical so-
lutions. The MHD equations, reiterated with the addition of the
stabilizing terms, and associated fields are

DtVj = − ρ−1∂jP + ρ−1εjabεacd (∂cBd )Bb

+ Gj + ∂j ((ζs + ζl)∂iVi), (5)

DtBj = Bi∂iVj − Bj∂iVi + ξj , (6)

6 The authors are of the opinion that enough numerical schemes have been
named FPM, and as the names are getting confusing the practice should cease.
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Dtσ = −(σ + P )∂iVi + (ζs + ζl)(∂iVi)
2 + Hσρ∂i

(
ζs∂i

σ

ρ

)
,

(7)

Dtρ = −ρ∂iVi + Hρ∂i(ζs∂iρ), (8)

Dtζl = ∂i(κζ ∂iζl) +
1

τl

λcmax − 1

τl

ζl, (9)

Dtζs = ∂i(κζ ∂iζs) +
1

τs+
Ss − 1

τs−
ζs, (10)

where λ is the Nyquist length, and cmax = √
c2
s + v2

a is the
maximum signal speed, where cs is the sound speed and
va is the Alfvén speed. Bulk viscosity fields ζl and ζs are
introduced to handle the general flow (ζl), and shocks and
other discontinuities (ζs). The action and parameterization
of these fields are described in Section 6.1. Hσ and Hρ

are constants that specify the strength of mass and thermal
conductivities in continuity and energy equations, while ξj is
the term representing diffusion of magnetic divergence defined
in Section 6.2.

To evolve the field variables in time, we evaluate
Equations (1)–(4) for the time derivatives, requiring values for
the field variables and their spatial derivatives at the position
of each target particle. We obtain this information by fitting
a third-order, three-dimensional (3D) polynomial to the set of
values carried by the neighboring particles, using the procedure
described in Section 3. The resulting polynomial coefficients al-
low us to compute the field value and its first, second, and third
derivatives at the position of the particle, enabling evaluation
of the Lagrangian time derivatives. Those in turn are used to
update the field variables with a predictor-corrector time step
scheme described in Section 3.3.

A particle-based algorithm such as this one has a dynamically
evolving spatial resolution. It turns out to be central to the
stability and accuracy of the method that the particle distribution
not have voids within which the fields cannot be accurately
fit. We create and delete particles as necessary to eliminate
such voids, while avoiding particle clumps. This further allows
us to adaptively satisfy any user-specified physical resolution
requirement, as well as to eliminate unnecessary particles
(Section 4). We force the resolution to always exceed a spatially
and temporally variable target resolution λ(x, t). Effectively,
the particles can represent the field variables in the same
manner as a grid with effective resolution λ at each point.
The resolution requirement can be specified depending on the
physics requirements of the problem at hand, so long as it
remains reasonably smooth.

The Phurbas discretization is based on point values, not
finite volumes or finite masses. As such, the discretization
used to calculate spatial derivatives and advance the solution
in time does not define a value for volume-integrated quantities,
including volume-integrated, conserved quantities. To define
these quantities, another discretization would need to be added
to obtain a multidimensional quadrature from the unstructured
set of samples. For example, Voronoi cell volumes could be used
to calculate a nearest-grid-point interpolation for a Riemann-
sum approximation to a volume integral. Alternatively, using
a point density approximated from the number of neighboring

points in some small radius as a weighting, a Monte-Carlo-type
volume integral approximation could be used.

As the magnetic field evolves, discretization error generates
spurious magnetic divergence ∇· B. By dropping the physically
vanishing term −∇· B when deriving the Lagrangian induction
equation from the usual Eulerian form expressed with a partial
time derivative, we have made any ∇· B present in the field
into a passively advected scalar. A consequence of this choice
of the canonical Lagrangian form is that our MHD equations,
by omitting a term that is physically zero, are precisely the
same as a form that is claimed in other works to include
an extra source term: the same result has been proposed
with a source term by Janhunen (2000), and derived from
the relativistic form of energy-momentum conservation and
relativistic electromagnetic theory by Dellar (2001). In the latter
paper, it is shown to be the Galilean invariant momentum and
energy conserving form for the MHD equations in the case
when ∇· B is present. We note that ∇· B of nonphysical origin
is easier to numerically handle in the Lagrangian form of the
MHD equations, as the presence of ∇· B errors does not feed
back into violations of energy and momentum conservation by
itself. Unlike in SPH MHD (Price 2012b), we do not require
source terms in the momentum and energy equations, as our
discretization does not suffer from the tensile instability as in
SPH. The diffusive correction described in Section 6.2 adds a
term to the magnetic equation that diffuses ∇· B.

3. TIME EVOLUTION

We evolve the field variables forward in time by evaluating
the MHD Equations (1)–(4) at the position of each particle.
We do this by constructing a local approximation of the field
variables at that position, derived from a spatial fit to the values
of the field variables on neighboring particles (Section 3.1).
This allows us to compute the values and spatial derivatives
of the field variables at the position of the particle. We choose
for the form of the continuous approximation a 3D, third-order,
polynomial. We further develop a system of particle weights
that enhances the accuracy of the fit (Section 3.2). Once we
have evaluated the Lagrangian time derivatives from the MHD
equations, the field variables and particle positions are updated
in time with a predictor-corrector method (Section 3.3).

3.1. Moving Least Squares Procedure

Phurbas uses a moving-least-squares fitting procedure in two
versions. First, to approximate derivatives of the dynamical field
variables on the right-hand sides of the governing equations,
moving-least-squares interpolants are used. These are polyno-
mial approximations that are forced though (interpolate) the cen-
tral particle value. Second, Phurbas uses moving-least-squares
fits to initialize newly created particles. These are polynomial
approximations that are not forced though any particle values,
and hence provide a smooth approximation to the field values
where no particle currently exists.

In the language of Lancaster & Salkauskas (1981), the first
version is an Interpolating Moving Least Squares procedure and
the second is a Moving Least Squares procedure. In addition to
Lancaster & Salkauskas (1981), discussion at length can be
found, for example, in Belytschko et al. (1996), Dilts (1999), or
Fries & Matthies (2004).

For the purposes of Phurbas, we can follow the description by
Liszka et al. (1996), which leads to what has become known as a
Generalized Finite Difference Method (Liszka & Orkisz 1980).
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Phurbas uses both the Nodal Approximation described in Liszka
et al. (1996, Section 2.1.1) and the Pointwise Approximation in
Liszka et al. (1996, Section 2.1.2). We briefly expand on those
descriptions here for clarity.

In one dimension, we start with a function that we wish to
discretize, defined at some set of points g = g(x). To approxi-
mate the function at a point x0, we select a set of nearby points
{xi}, and then write the series approximation using n polynomial
terms pi(x),

q(x) =
n∑

i=0

aipi(x − x0) (11)

so that q(x) ≈ g(x). If the functions pi are selected as
polynomials,

p(x) = [1, x, y, z, x2, y2, z2, xy, xz, x3, . . .] (12)

then this approximation is a Taylor series about x0, as in
Equation (11) we have shifted the polynomials p to be centered
on x0. The coefficients ai are then the value and derivatives
(multiplied by a Taylor series coefficient) of the approximation
q(x).

If the function g is defined at x0 we can reduce the approx-
imation to a special case, called the Nodal Approximation by
Liszka et al. (1996, Section 2.1.1). If we fix the coefficient
a0 = g(x0) = q(x0), then only the coefficients ai for i > 1 need
to be determined, and the approximation becomes

q(x) = g(x0) +
n∑

i=1

aipi(x − x0). (13)

We choose to use a number of neighboring points n greater
than the number of undetermined polynomial coefficients m. As
Equation (13) is then overdetermined, we seek a solution in the
least-squares sense. That is, the solution for ai should minimize
the quadratic form

J =
n∑

j=1

W (xj − x0)(g(xj ) − q(xj ))2, (14)

where W is a weight function described below. We can rewrite
this set of equations in matrix form by defining

gT = [g(x1) − g(x0), g(x2) − g(x0), g(x3) − g(x0), ...] ,

(15)

P =

⎡
⎢⎢⎣

p1(x1 − x0) p2(x1 − x0) . . . pm(x1 − x0)
p1(x2 − x0) p2(x2 − x0) . . . pm(x2 − x0)

...
...

. . .
...

p1(xn − x0) p2(xn − x0) . . . pm(xn − x0)

⎤
⎥⎥⎦ ,

(16)

and

W =

⎡
⎢⎢⎣

W (x1 − x0) 0 . . . 0
0 W (x2 − x0) . . . 0
...

...
. . .

...
0 0 . . . W (xn − x0)

⎤
⎥⎥⎦ .

(17)

Then Equation (14) can be written

J = (Pa − g)TW(Pa − g). (18)

If we define

A = PTWP (19)

B = PTW (20)

then minimizing J as in Belytschko et al. (1996) we obtain

a = A−1Bg (21)

and

aT =
[
∂q

∂x
,
∂q

∂y
,
∂q

∂z
, 2

∂2q

∂x2
, . . .

]
(22)

gives the derivatives of the interpolating moving-least-squares
approximation.

The second form, the Pointwise Approximation, is defined
everywhere, not just where there is a particle. This form is used
when adding new particles. The coefficient a0 is left free, the
approximation is Equation (11), and now at an arbitrary point x
the approximation yields

gT = [g(x0), g(x1), g(x2), g(x3), . . .] , (23)

P =

⎡
⎢⎢⎣

p0(x0 − x) p1(x0 − x) . . . pm(x0 − x)
p0(x1 − x) p1(x1 − x) . . . pm(x1 − x)

...
...

. . .
...

p0(xn − x) p1(xn − x) . . . pm(xn − x)

⎤
⎥⎥⎦ ,

(24)

and

W =

⎡
⎢⎢⎣

W (x0 − x) 0 . . . 0
0 W (x1 − x) . . . 0
...

...
. . .

...
0 0 . . . W (xn − x)

⎤
⎥⎥⎦ .

(25)

The vector of coefficients then yields

aT =
[
q(x),

∂q

∂x
,
∂q

∂y
,
∂q

∂z
, 2

∂2q

∂x2
, . . .

]
. (26)

The coefficients vector has either 19 or 20 coefficients, de-
pending on the approximation, so the solution requires inversion
of either a 19 × 19 or 20 × 20 matrix A. We use an LU decom-
position and back substitution procedure (e.g., Press et al. 1992,
p. 32) to solve Equation (21). The derived polynomial coeffi-
cients yield the values of the field variables and their derivatives
of first, second, and third orders, from which we construct the
first- and second-order time derivatives of the field variables.

We have experimentally found that the number of particles in-
cluded in the evaluation sums for the matrix coefficients should
comfortably exceed the number of terms in the polynomial. The
choice of how many particles to include is based on a compro-
mise between lack of statistical significance and computational
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impracticality. The radius rf of the sphere encompassing the
particles included should also be large enough to justify a third-
degree interpolation, about twice the characteristic interparticle
separation λ. For a uniform particle density of one particle within
each volume λ3, a sphere with rf = 2λ encloses ∼34 particles.
However, this leaves little room to account for non-uniform par-
ticle densities. A sphere with rf = 3λ encloses ∼110 particles,
which weighs on the cost of calculating the matrix coefficients.
A radius as large as this also invites higher-order structure to
erode the interpolation. In the end we choose to use

rf = 2.3λ, (27)

corresponding to ∼51 particles. We have not yet derived a
rigorous lower bound to the required number of neighbors to
use. For computational cost, we find that a third-order fit has
computational cost comparable to the other operations that occur
in the time step, while a fourth-order fit is substantially more
expensive. We term the sphere of radius rf around a fit center
the neighbor sphere.

The target resolution λ(x, t) is a property of the location of
the fit center, which may or may not be centered at the location
of a particle. In practice, as the interpolation is centered at the
location of an existing particle, then λ for the interpolation is
taken as the λ of that particle. If a fit is being used to generate
new values for the addition of a particle, the λ of the particle
that triggered the creation of the new particle is used.

3.2. Weights

In the moving-least-squares procedure, each neighbor particle
j has a weight Wj. There is significant freedom to choose the
form of the weights Wj, and no rigorous theoretical framework
exists under which an optimal choice can be made. As a first
approximation, we choose weights that emphasize particles
close to the center of the neighbor sphere, so that the local
least-squares approximation varies more smoothly as the target
position is changed. The weighting function is a piecewise linear
function of the distance of particle j from the fit center rj, given
as:

Wj =
{

1 if 0 � rj < rw

1 − 3
5

(
r−rw

rf −rw

)
if rw � rj � rf ,

(28)

where rw = 3
2λ. Wj has a nonzero value at the edge of the

neighbor sphere so as to not exclude any particles from the fit.

3.3. Time Update

The field variables are evolved in time with a Hermite
predictor-corrector scheme based on the first- and second-order
Lagrangian time derivatives. A derivation of the scheme is
presented in Appendix B, as it has not previously been described
in the literature. The interpolation procedure in Section 3.1 for
time step i + 1 is done on the predicted values qp,i computed
in time step i, yielding the time derivative values Dtqp,i and
Dttqp,i needed for the correction in time step i, as well as for
the prediction of time step i + 1.

We begin by extrapolating forward from time ti to time ti+1,
over the time interval Δt = ti+1 − ti , to make a prediction

qp,i+1 = qc,i + Dtqp,iΔt +
1

2
Dttqp,iΔt2, (29)

based on a Taylor series expansion around qp,i , using the
corrected value from the previous time step qc,i . We then

evaluate the time derivatives by interpolation on the predicted
fields qp,i+1 at time ti+1, and correct the prediction to derive the
corrected value at ti+1,

qc,i+1 = qc,i +
1

2
(Dtqp,i + Dtqp,i+1)Δt

+
1

12
(Dttqp,i − Dttqp,i+1)Δt2. (30)

The particle positions x are evolved using third-order time
information Dtttx = Dtt V as well. This allows us to use a third-
order predictor of the form

xp,i+1 = xc,i + Vc,iΔt

+
1

2
DtVp,iΔt2 +

1

6
DttVp,iΔt3 (31)

and to correct it to the final value

xc,i+1 = xc,i +
1

2
(Vc,i + Vc,i+1)Δt

+
1

10
(DtVp,i − DtVp,i+1)Δt2

+
1

120
(DttVp,i + DttVp,i+1)Δt3. (32)

4. REGULARIZING THE PARTICLE DISTRIBUTION

Our algorithm relies on discretization over Lagrangian sample
points. These points are not arrayed on a grid, nor are they con-
nected by mesh edges as in the AREPO code (Springel 2010),
so this is a meshless method. During evolution, we require that
the particles should maintain a distribution such that there are
no voids larger than the target local resolution λ(x, t) and no
excessive point concentrations within the scale λ. The require-
ment of no voids is introduced to ensure that every fit sphere of
radius rf has enough points to perform the moving-least-squares
procedure and that the fit spheres overlap sufficiently so that the
set of fit spheres covers the entire simulation volume. The re-
quirement of no point concentrations requires the removal of
excess points. We implement these requirements by adding and
deleting particles as needed. Satisfying these requirements con-
fers the great benefit of making the code fully adaptive, since
the user can dynamically choose the function λ(x, t) as required
by the physics of the problem, so long as it is reasonably smooth
in space and time.

The addition and deletion algorithm begins with the assembly
of all neighbors i within the neighbor sphere of radius rf around
a particle j, along with their associated target resolutions λi.
Voids within the neighbor sphere are identified using the method
described in Section 4.1. Any voids identified are reported as
candidates for particle creation. Conversely, if a particle j has
a mutual nearest neighbor that is too close (see Section 4.2),
one of the two particles is deleted. Duplicate voids and clumps
are pruned from the global list prior to the particle creation and
deletion described in Section 4.3.

4.1. Voids

To check for a void at a point in space with position x, we
identify the nearest particle i, which is located at position xi

and has a resolution scale λi. The distance between x and the
particle normalized by the resolution scale is then

xvoid = |x − xi |
λi

. (33)

6
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As a resolution condition, we then choose the condition that if

xvoid > cvoid, (34)

for a constant cvoid, the space around x is indeed too sparsely
populated, indicating a need for particle addition.

To heuristically derive cvoid, we consider an arrangement
of particles on the hexagonal lattice representing the tightest
possible packing of spheres centered on the particles. If the
particle density is one particle per volume λ3, then the spheres’
centers will be separated by a distance dp = 21/6. This represents
the most efficient possible filling of the region with particles.
Since any real, fluctuating, particle distribution will require more
particles to fully resolve the field, we set

cvoid = 0.73dp (35)

so that with a disordered particle set we sample more density
than would be required with the ideal ordered particle set.

To identify unique voids, we first identify the most egregious
void within the neighbor sphere of each particle, and then check
to see if that void violates the condition given by Equation (34).
If it does we add a particle as described below in Section 4.3. We
begin by examining the space in the vicinity of existing particles.
We construct a 3D cubic grid with side length 2rf containing
9×9×9 grid points, centered on the target particle position xj .
This grid covers the volume of the neighbor sphere. For each grid
point, the normalized distance xvoid to all neighboring particles
can be calculated using Equation (33) and the minimum value
chosen. If the maximum value on the grid of xvoid > cvoid, the
position of the grid point with the maximum value is reported
as a candidate void for particle creation.

To speed up the calculation, we sieve the grid points lying
within the neighbor sphere. We begin the search by initializing
a large value on each grid point for the minimum value of xvoid
for that grid point. We then proceed by selecting each particle
i in turn, and looping over all grid points. For each grid point,
we calculate the normalized distance xvoid to the particle i. If
its value for the grid point is less than the current minimum
value on that point, we replace it with the newly calculated
value for particle i. If the new value is less than cvoid, that grid
point can be eliminated from the active list of candidates for void
identification. We then move to the next particle and calculate its
distance to the remaining active grid points, repeating the above
procedure. After all particles have been sieved, if any grid points
remain as void candidates, we report the one with the maximum
xvoid as a candidate for void creation. To hasten the operation,
we first sieve the particles within λ from the target position, then
those within (3/2)λ, and then the remaining particles, where λ
is the value for the target position.

4.2. Clumps

As the particles move, random fluctuations will move them
closer or farther from their neighbors. If two particles approach
each other too closely compared to λ, they are essentially sam-
pling the same field variable information, and so are redundant.
Because there are no restoring forces in the algorithm to separate
nearby particles, we instead remove any particle clumps of this
sort, saving the computational cost of evolving the redundant
particles. The question then remains of how to determine when
a clump has formed.

To do this, we define a scaled distance between two particles:

r2
ij = (xi − xj )2

λiλj

. (36)

The nearest neighbor i to the target particle j is determined. In
turn its nearest neighbor is found. If they are mutual nearest
neighbors and if

rij < cclump (37)

they are candidates for deletion. We find that a value of

cclump = 0.12dp (38)

is suitable to prevent over-resolution. Among those two parti-
cles, we delete the one which was more recently created, retain-
ing the particles with longer history to minimize the numerical
diffusion from adaption.

If particles are to be deleted, this is done so without consid-
ering whether that particle triggered the proposed addition of a
particle (that is, whether it is in a clump on the edge of a void).
However, any proposed addition resulting from the processing
of that particle is still considered.

4.3. Particle Creation and Deletion

The first examination of all the active particles results in a pro-
posed list of positions requiring particle addition, accompanied
by the radius of the void detected. These proposals overlap, as
each void may be detected by more than one particle. The list is
exchanged by processes handling neighboring spatial domains,
so that each process has a list of all the proposed additions within
a distance rf of its boundary. The proposed addition list is then
pruned, to select one position in which to add a particle within
each void radius. To do this, each particle addition proposal is
compared to all other proposals within that spatial domain. If
any other proposed location lies within its void radius, the val-
ues of the void radii are compared, and the proposal with the
smaller void radius is rejected.

We then create particles at the successfully proposed posi-
tions. Particles in this algorithm represent sample points, not
discrete parcels of gas. When we add particles, we are just sam-
pling the continuous field variables at new positions. Therefore,
considerations of conservation do not enter this process, un-
like in particle-splitting methods used in SPH (e.g., Kitsionas &
Whitworth 2002).

The task of creating new particles needs to be load balanced
among processors in order to handle situations where the mem-
ory required for new particles represents a large fraction of the
total free memory in the particle arrays. The new particles are
then initialized in free spaces, on the processors to which they
have been assigned by the addition load balance procedure. As
we have now deleted some particles, and added others to essen-
tially random processors, a new load balance may be calculated
among all particles, and the neighbor search data structure must
be updated. Doing this on the entire particle list brings the new
particles to optimal positions on the processors and provides
neighbor information for the subsequent processing stages.

New particles are initialized using a third-order moving-least-
squares fit, as opposed to an interpolation (Section 3.1). This fit
is centered on the position of the new particle.

5. TIME STEPS

The time step for each particle is set by taking the minimum
of five criteria. These are evaluated at the phase where new
time derivatives are computed. The basic limit is the CFL
condition for the stability of a forward-time-centered-space
discretization. It is used here without explicit derivation as the
general principle applies that the maximum stable time step must
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be short enough that a signal cannot cross a distance exceeding
the local resolution λ,

ΔtCFL = CCFL
λ√

c2
s + v2

A

, (39)

where ΔtCFL is the CFL time step, CCFL is the Courant number,
which we usually take to be 0.3, cs is the sound speed, and vA is
the Alfvén speed. Note that, unlike an Eulerian code, the flow
velocity does not enter this equation.

The use of the bulk viscosity fields ζs and ζl require an
appropriate time step constraint related to the diffusion term
they introduce in the momentum equation,

Δtζ = CCFL

π2(ζs + ζl)
. (40)

Another time step constraint of the same form is applied based
on the need for a sufficient number of time steps during a
compression or expansion to allow for particle addition and
deletion. This is the von Neumann time step

ΔtVC = CCFL

π2C2
VC|∇ · V| , (41)

where CVC is a constant, which we usually take to be 2. The
arbitrary form of the constant term π2C2

VC comes from an
analogy with the form of the von Neumann time step constraint
by considering the von Neumann term

C2
VCλ2(−∇ · V)+(−∇ · V), (42)

where ()+ denotes that the expression is zero if the term contained
is negative, as a diffusion operator and following the time step
constraint from Maron & Mac Low (2009, Equation (8)). We
also introduce a similar constraint based on the shear of the flow
to allow for needed regularization, although the constraint on
this vorticity time step much looser than in compression and
expansion:

ΔtVR = CCFL

10π2C2
VC|∇ × V| . (43)

The factor 10π2C2
VC is an ad hoc scaling that in practice has

been found to be sufficient.
The time step limit assigned for a particle is

Δt = min(ΔtCFL, Δtζ , ΔtVC, ΔtVR). (44)

Each particle has an individually assigned time step. To tailor the
algorithm to parallel implementation, a block time step scheme
can be adopted. For such a time step scheme, the time steps
actually used are rounded down to the nearest block time step
interval.

It is also necessary to ensure some degree of spatial coherence
to the time steps, so that disturbances propagate from short-time
step particles to long-time step particles smoothly. At the end of
the time update procedure for a particle, after the assignment of
the new time step for a particle, if any of the neighbor particles
has an end time greater than the target particle’s new end time,
a time step limit propagation procedure is triggered for the
target particle. The target particle’s end time propagates to its
neighbors, and if any neighbor’s end time is farther from the
current time than twice the interval to the target particle’s end
time, then the neighbor’s end time is set to this limit.

6. ARTIFICIAL DIFFUSION

Three types of artificial diffusion terms are used to stabi-
lize the solutions to the equations modeled in Phurbas. These
are terms acting as bulk viscosity, mass and internal energy dif-
fusion terms, and a term acting to diffuse magnetic monopoles.
We find that these terms are sufficient to damp small scale fluc-
tuations that would otherwise make the scheme unstable.

6.1. Bulk Viscosities

We use two bulk viscosity fields. The first, ζl , quenches
small scale compressive motion in all areas of the flow, and
evolves according to Equation (9). The second, ζs , is a shock and
discontinuity viscosity that evolves according to Equation (10).
Equations (9) and (10) each consist of three terms, a diffusion
term, a source term, and a decay term. This configuration ensures
that the bulk viscosity fields vary smoothly in time and space.

The diffusion operator on the bulk viscosity fields κζ =
0.15λcmax is chosen to place a time step limit less stringent
than the Courant limit from the hyperbolic part of the MHD
equations. The bulk viscosity fields have source and decay terms
and these terms have associated timescales. For the ζl field the
source and decay term timescales are the same, τl = λ/cmax. The
ζs field is designed to fall off more slowly than it rises, which
is particularly advantageous calming post-shock oscillations,
so τs− = 20λ/cmax and τs+ = λ/cmax. The use of a diffusion
equation with source and decay terms to derive the artificial
viscosity field here is analogous to the design in a discontinuous
Galerkin method by Barter & Darmofal (2010) and the slow
decay of the shock viscosity achieves a similar effect to the bulk
viscosity prescription used by Morris & Monaghan (1997).

The ζs source term Ss is given by

Ss = max
(
C2

VN(−∂iVi)+λ
2, Ce|∂i∂i(σ/ρ)|λ2,

Cρρ
−1|∂i∂i(ρ)|λ3

√
c2
s + v2

a, CP P −1|∂i∂i(P )|λ3
√

c2
s + v2

a

)
.

(45)

The first term has the form of the conventional von Neumann
artificial viscosity, with CVN = 2. The second term responds to
changes in the specific internal energy, in a manner similar to the
dissipation introduced by Price (2008). This form is a trigger on
the size of the second derivative of the specific internal energy,
and Ce = 0.1. The third term is constructed analogously to the
second, but using the Laplacian of density and Cρ = 1.0. The
final term is again constructed analogously to the second, but
using the Laplacian of pressure and CP = 3.0. The constants
CVN, Ce, and CP can be tuned for a particular problem, with
smaller values being preferable, but the values given here have
proven to be sufficient for most problems.

The mass and internal energy diffusion terms are coupled
to the ζs field, with a strength set by the constants Hρ =
Hσ = 5 × 10−4. For stability, it would be preferable to have
a small scale mass and internal energy diffusion (such as a
hyperdiffusion) active everywhere in the flow, but we have not
found a formulation of such a term that is sufficiently accurate
to yield reasonable mass conservation results.

6.2. Magnetic Divergence Diffusion

As Phurbas solves the equations of MHD, the issue of
magnetic monopole errors must be treated. The primary problem
caused by monopole errors in schemes of this type is numerical
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instability. The interpolating moving-least-squares derivative
estimates may return derivatives of the magnetic field that do
not satisfy ∇ · B = 0. Over several time update cycles, these
estimates may lead to the local creation of a net magnetic
monopole character to the field. In practice, we have found
that a diffusive (or parabolic) correction is sufficient to prevent
the growth of this monopole character of the magnetic field (see
tests in Paper II).

For each particle, a ∇· B field is defined. The value is simply
reset each time step to the value of ∇· B derived from the fit
to the magnetic field. The derivatives of the ∇· B field derived
from the fits are then used to diffuse ∇· B, generally resulting
in a reduction of its value. These fitted values and derivatives of
∇· B are less noisy than values and derivatives of ∇· B derived
directly from fits to the magnetic field.

The diffusion term for particle j is

ξj = ηmax∇(∇ · Bj ), (46)

where ηmax is the maximum diffusion coefficient possible under
the stability criterion

Δt <
λ2

π2η
(47)

from Maron & Mac Low (2009, Equation (8)). The term
given by Equation (46) is added to the right-hand side of the
induction equation (Equation (2)) in the first time derivatives
used in the second-order predictor-corrector scheme for the
evolution of the magnetic field. The effect of this is that the
∇· B diffusion operator is integrated with a first-order predictor-
corrector scheme. The ∇· B diffusion ηmax is computed each
time the fields are fit, which occurs at times that are the end
of one time step and the beginning of the next. The time step
used to define ηmax is the time step that has its end at the instant
ηmax is calculated, i.e., the previous time step. Thus, the ηmax
used in the predictor stage of the time integration of a particular
step is different from the ηmax later used in the corrector stage
of the same time step. This diffusion is not conservative, but
the Phurbas discretization only preserves the conservation in
the MHD equations to truncation error levels, and the ∇· B
operated on by this diffusion is, by definition, only created
below truncation error levels. We find that since the canonical
form of the Lagrangian MHD equations that we use treats ∇· B
as a passively advected scalar, the presence of small amounts of
∇· B does not destabilize the solution.

7. SUMMARY AND DISCUSSION

7.1. Summary of the Algorithm

We now summarize the conceptual steps of the algorithm. The
operations described here are actually often broken into multiple
phases to enable efficient parallelization. Future implementers
of the algorithm should consider the specific needs of each
operation when designing data structures and communication
patterns.

1. Build the neighbor-finding data structure, such as a particle
tree.

2. Balance particles among processors.
3. Identify target particles for evolution.
4. Use the tree to assemble all neighbors within a radius rf of

the target particles.
5. Check for voids. Complete particle addition for qualifying

voids (Section 4.1).

6. Check if there are mutual nearest neighbor pairs that are
too close. Delete one (Section 4.2).

7. Evaluate the polynomial fit weights (Section 3.2).
8. Compute the local polynomial fit to derive values and spatial

derivatives at the location of each particle (Section 3.1).
9. Use the polynomial coefficients to evaluate the MHD

equations for the Lagrangian time derivatives including
diffusivity terms (Section 2).

10. Use the polynomial coefficients to evaluate the governing
equations of the bulk viscosity fields ζl and ζs for the
Lagrangian time derivatives (Section 2).

11. Use the time derivatives to correct the previous time step
(Section 3.3).

12. Evaluate the resolution scale λ for each particle position
(Section 2).

13. Evaluate the size of the next time step (Section 5).
14. Use the time derivatives to predict forward in time to the

next time step (Section 3.3).
15. Restrict local time step variations (Section 5).

7.2. Effective Resolution

To understand the effect of varying the effective resolution
parameter λ on the numerical resolution, consider a one-
dimensional uniform grid with a grid spacing of unity, initialized
with a field variable having values given by the Fourier mode
sin(πkx). The maximum wave number k of this mode that
can be expressed on this grid is k = 1, the Nyquist wave
number. In order to be able to calculate realistic derivatives with
finite differences, k must be less than unity, and the precision
increases as k decreases. Maron et al. (2008) and Maron & Mac
Low (2009) evaluate the effective precision of finite difference
schemes with varying stencil sizes. They find that for a stencil
radius of {1, 2, 3, 4}, finite differences can be calculated with
a relative precision of ∼1 percent up to a wave number of
k ∼ {1/8, 1/4, 2/5, 1/2}. Given that derivatives are more easily
calculated on a grid than for irregular particles, we take this as
an upper limit for what we can expect from particles. Since a
3D, third-order, polynomial corresponds to a 5-point (or stencil
radius 2) 1D finite-difference scheme, we expect k ∼ 1/4 to be
the limit of resolution, corresponding to a wavelength of ∼8λ.

8. CONCLUSION

We have described Phurbas, an adaptive, Lagrangian, mesh-
less algorithm for MHD. The algorithm is described for the
specific case of the MHD equations, but can be easily general-
ized to other hyperbolic systems, as the fitting, time integration,
and stabilization procedures do not rely on particular properties
of the MHD equations. The central principle of the algorithm
is that the solution and its spatial derivatives are derived from
a high-order, interpolating, polynomial fit to a set of particles
that are merely Lagrangian sample points in the flow, not mass
elements as in SPH or finite volume methods. This allows for
significant flexibility in the design of the algorithm, and the
implementation of additional physical processes. Particle ad-
dition and deletion is required to prevent the growth of voids
or clumps. This naturally allows the numerical resolution to be
fully adaptive based on user specified criteria. The Lagrangian
nature of the code means that particles can be evolved with
time steps dependent only on the nature of the local flow, and
that numerical diffusion is Galilean invariant. The version de-
scribed here is just one subset of the many available options.
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Paper II describes a parallel implementation and tests of Phur-
bas that demonstrate accuracy comparable to that of third-order
grid codes on subsonic and supersonic problems.

A few theoretically desirable improvements to the scheme
can already be identified. Though the ζl field is sufficient to
modify the equations to give reasonable results in tests, it would
be preferable to only use stabilizing viscosities that scale as λ2

or a higher power (hyperviscosities) to give faster convergence
of the modeled equations to the limit of ideal MHD. Possible
avenues though which such an effect could be achieved are: use
of a different interpolation scheme than moving least squares,
and/or a time or spatially dependent version of ζl so that it
couples only to the shortest wavelength or shortest timescale
motions. Kuhnert (1999) showed methods for introducing up-
winding into a scheme similar to Phurbas, a modification that
may reduce the need for ζl . Additionally, in defining ζs we have
used a simple formulation where the effects decay on the same
timescale and reflect the effects of discontinuities (shocks and
otherwise) through the same parameter. In SPH, Price (2012b)
and Rosswog (2009) have found that separate parameters for
each discontinuity are useful. Analogously in the framework
here, ζs could be broken into three fields, though this would
come at some cost.

The second-order Hermite predictor-corrector scheme is
particularly useful as it only requires computations of spatial
derivatives at the beginning of each time step, and the predictor
half of the integration can be done without knowing the end-
time of the time step. It however has the drawback that first and
second time derivatives of the field variables must be obtained.
In general, these analytic expressions could be very complicated.
A time integration scheme, such as a Runge–Kutta method, that
uses only first time derivatives may be preferable in this sense.
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APPENDIX A

STABILITY OF A MODEL SCHEME

To determine the stability requirements for our meshless
method, we here present a stability analysis for a simple model
that captures the essential points of our algorithm. We analyze
a numerical scheme for approximating the solution of the
diffusion equation

∂u

∂t
= D

∂2u

∂x2
. (A1)

We discretize u(x) on a grid with spacing Δx. To find derivatives
of u we use a moving-least-squares approximation. Shifting the

origin to grid point x0 the polynomial approximation of u(x) is
given by

U (x) =
P∑

p=0

apxp. (A2)

The coefficients ap are determined by minimizing the sum of
the square of errors E2 at 2N + 1 neighboring grid points, given
by

E2 =
N∑

j=−N

(uj − U (xj ))2. (A3)

Combining these two expressions, and using the definition of
the grid point positions xj = jΔx gives

E2 =
N∑

j=−N

⎛
⎝uj −

P∑
p=0

apjpΔxp

⎞
⎠

2

. (A4)

We can find the minimum of E2 by setting ∂E2/∂aq = 0 yielding

N∑
j=−N

jqΔxquj =
N∑

j=−N

P∑
p=0

apjp+qΔxp+q, (A5)

which is a system of equations for q = 0..P that can be solved
for the polynomial coefficients ap. The second derivative of the
polynomial equation (A2) at x = 0 is 2a2. So, we can write a
scheme to update the solution to Equation (A1) as

un+1
0 = a0 + 2Da2Δt, (A6)

where u0 = u(x0). In each step we replace the value un
0 with the

fit a0 and use the second derivative of the moving-least-squares
fit to construct a forward-Euler-type time update. This is a Maron
& Howes (2003)-type scheme for solving the diffusion equation.
As an example, for third-order polynomials (p = 3) and N = 4
this scheme is specifically

un+1
0 = u0

(
59

231
− 10

231

DΔt

Δx2

)
+

59

231

4∑
j=1

(uj + u−j )

− 5

231

4∑
j=1

j 2(uj + u−j ) (A7)

+
DΔt

Δx2

⎡
⎣ −1

231

4∑
j=1

(uj + u−j ) +
1

154

4∑
j=1

j 2(uj + u−j )

⎤
⎦ .

(A8)

To perform a von Neumann stability analysis, we substitute
un

� = ξneik�Δx , and solve for ξ

ξ = 1

231

⎛
⎝59 − 10

DΔt

Δx2
+

4∑
j=1

(59 − 5j 2) cos(jkΔx)

⎞
⎠

+
DΔt

Δx2

4∑
j=1

( −1

231
+

j 2

154

)
cos(jkΔx). (A9)
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Figure 1. von Neumann stability analysis of model schemes, showing the amplification factor |ξ | as a function of perturbation wavelength k and time step Δt , both
appropriately normalized to the grid. The unstable region with values of |ξ | > 1 is shown in white. Left: the Maron & Howes (2003)-type scheme for the diffusion
equation. Note the instability of low wavenumber perturbations kΔx � 0.4. Middle: least-squares interpolant scheme for the diffusion equation. Right: least-squares
interpolant scheme for the advection-diffusion equation. Both latter schemes show a region of stability at small enough time step for all wavenumber perturbations.

(A color version of this figure is available in the online journal.)

We can evaluate this expression numerically, plotting the am-
plification factor |ξ | for each wavenumber kΔx and time step
DΔt/Δx2. This is shown in Figure 1. The fundamental trouble
with Maron & Howes (2003)-type schemes using a moving-
least-squares fit is the region at low wavenumbers and small
time steps where the magnitude of the amplification factor is
greater than unity. In this region the scheme is unstable.

If instead we use a moving-least-squares interpolant instead
of just a fit, the system of equations for the coefficients is given
by

N∑
j=−N

jqΔxq(uj − u0) =
N∑

j=−N

P∑
p=1

apjp+qΔxp+q (A10)

for q = 1, 2, 3. Here we have eliminated the coefficient a0 by
forcing the moving-least-squares approximation to interpolate
u0. Then we can write a forward-Euler-type scheme using the
second derivative of this interpolant as

un+1
0 = un

0 + 2Da2Δt. (A11)

For p = 3 and N = 4 this gives the scheme

un+1
0 = u0 +

DΔt

354Δx2

4∑
j=0

j 2(uj + u−j − 2u0) (A12)

= u0

(
1 − 60DΔt

354Δx2

)
+

DΔt

354Δx2

4∑
j=1

j 2(uj + u−j ).

(A13)

Again, performing a von Neumann stability analysis, we sub-
stitute un

� = ξneik�Δx and solve for ξ

ξ =
(

1 − 60DΔt

354Δx2

)
+

DΔt

354Δx2

4∑
j=1

j 22 cos(jkΔx).

(A14)

The magnitude of ξ in this case is shown in the center panel
of Figure 1 for the case D = cΔx. In stark contrast to the
Maron & Howes (2003)-type scheme constructed with a non-
interpolating, moving-least-squares fit, a significant region of
stability (|ξ | < 1) exists at small time step for all wavenumbers
kΔx.

For the advection equation

∂u

∂t
= c

∂u

∂x
+ cΔx

∂2u

∂x2
, (A15)

we can write the scheme

un+1
0 = un

0 + cΔta1 + 2ca2ΔxΔt. (A16)

Here we have set the diffusion parameter to be scaled by the
grid resolution Δx. With the interpolating moving-least-squares
coefficients a1 and a2 as in the diffusion problem above we have

un+1
0 = u0

(
1 − 60cΔxΔt

354Δx2

)
+

cΔt

7128Δx

×
⎛
⎝59

4∑
j=1

j 2(uj − u−j ) − 815
4∑

j=1

j (uj − u−j )

⎞
⎠

+
cΔxΔt

354Δx2

4∑
j=1

j 2
(
uj + u−j

)
. (A17)

A von Neumann stability analysis yields

ξ =
(

1 − 60cΔt

354Δx

)
+

icΔt

7128Δx

×
⎛
⎝59

4∑
j=1

2j 2 sin(jkΔx) − 815
4∑

j=1

2j sin(jkΔx)

⎞
⎠

+
cΔt

354Δx

4∑
j=1

j 22 cos(jkΔx). (A18)
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Note that the second term is imaginary, arising from the
advection operator, so if the contributions from the diffusion
operator, the part of the first term, and the final term, were
dropped, the scheme for the pure advection problem would
be unconditionally unstable. We plot the magnitude of the
amplification factor |ξ | in Figure 1. The addition of the diffusion
operator has stabilized the advection problem for sufficiently
small time steps cΔt/Δx.

APPENDIX B

TIME INTEGRATION

Time integration proceeds using a system of Hermite
predictor-corrector formulae for field variable and position up-
dates. This scheme is a lower-order version of that presented
in Nitadori & Makino (2008). As it is has not previously been
described in the literature, we present here a brief derivation of
the integration method.

We predict field values qp,i+1 at time t + Δt using a Taylor
series expansion around their values at time t incorporating
their time derivatives calculated after the prediction phase of
the previous time step, giving

qp,i+1 = qc,i + Dtqp,iΔt +
1

2
Dttqp,iΔt2, (B1)

where qc,i is the corrected field value from the previous time step
at time t. After calculating the values of qp,i+1, we use them to
calculate Dtqp,i+1 and Dttqp,i+1, as given by Equations (5)–(10),
and those in Appendix C. These derivatives will be used in the
corrector stage of the current time step and in the predictor stage
of the next time step. The stabilizing diffusion terms, linked to
the ζs and ζl fields are proportional to the resolution parameter
λ. As asymptotically, the time step varies as λ itself due to the
CFL limit, we only integrate these terms to first order in time,
so the combined space-time error is second order in λ.

By using higher time derivatives, a Hermite scheme of time
integration depending only on field variable values from the
previous time step can be constructed. This saves storage,
avoids complex start up procedures, and simplifies the use
of individual particle time steps in comparison to predictor-
corrector schemes based on Newton interpolation (such as
Aarseth and Adams–Bashforth–Moulton schemes) that require
storage of field values from earlier time steps. The Hermite
corrector stage is constructed as

qc,i+1 = qc,i +
∫ Δt

0
fc(τ )dτ. (B2)

We choose the function fc(τ ) to be a Hermite interpolation, that
is, a polynomial that interpolates Dtq and Dttq at each end of
the time step. We further choose to simplify the formalism by
designing the polynomial to be time symmetric about t + Δt/2,
so that

fc(τ ) = f0 + f1

(
τ − Δt

2

)
+ f2

(
τ − Δt

2

)2

+ f3

(
τ − Δt

2

)3

.

(B3)

We determine the coefficients f0, f1, f2, f3 by using four
constraints: at τ = 0, fc(τ ) must have a value of Dtqp,i ,
and a time derivative Dttqp,i ; while at τ = Δt the value and
the derivative must be Dtqp,i+1 and Dttqp,i+1, respectively.

However, evaluating the integral in Equation (B2), the time
symmetry we chose yields the simple result that the f1 and
f3 terms integrate to zero regardless of the values of their
coefficients. Performing the integral in Equation (B2) yields
a correction stage

qc,i+1 = qc,i +
1

2
(Dtqp,i + Dtqp,i+1)Δt

+
1

12
(Dttqp,i − Dttqp,i+1)Δt2. (B4)

Velocity V is treated as an independent set of field variables,
so for particle positions x there are three time derivatives of
information available, as well as corrected values of velocity
from the beginning and end of the current time step. Therefore,
for the predictor stage for the position we use a third-order Taylor
series incorporating the best information available at time t,

xp,i+1 = xc,i + Vc,iΔt +
1

2
DtVp,iΔt2 +

1

6
DttVp,iΔt3. (B5)

Similarly to the field variable integration we choose a time-
symmetric, Hermite interpolating function, so that the corrector
stage is

xc,i+1 = xc,i +
∫ Δt

0
gc(τ )dτ. (B6)

The function gc(τ ) is again a polynomial centered on t +
Δt/2, that now interpolates through Vc,i , DtVp,i , and DttVp,i

at τ = 0, and through Vc,i+1, DtVp,i+1, and DttVp,i+1 at
τ = Δt . (The availability of Vc,i+1 occurs because we have,
at this point, already updated the field variables.) Applying
these constraints allows us to evaluate the coefficients in the
interpolating polynomial

gc(τ ) = g0 + g1

(
τ − Δt

2

)
+ g2

(
τ − Δt

2

)2

+ g3

(
τ − Δt

2

)3

+ g4

(
τ − Δt

2

)4

+ g5

(
τ − Δt

2

)5

. (B7)

Evaluating the integral in Equation (B6), the g1, g3, and g5
terms are zero due to the choice of time symmetry, and so the
correction stage for particle positions is

xc,i+1 = xc,i +
1

2
(Vc,i + Vc,i+1)Δt +

1

10
(DtVp,i − DtVp,i+1)Δt2

+
1

120
(DttVp,i + DttVp,i+1)Δt3. (B8)

It can be useful to split the integration in to a background
flow and perturbations, for example in computing the dynamics
of a steady-state cylindrical flow. In this case we define the
perturbation velocity field as V′ = V − Ωrφ̂ where r is the
two-dimensional radius from the center of the cylinder, and
Ω(r) is the angular velocity of the background flow. We denote
the components of the circular radius to the point (xc,i , yc,i) as
rc,i,x, rc,i,y , and the angular velocity of the background flow at
this radius is Ωp. Then, the predictor step with the background
flow separated from the perturbation velocity V′ is

xp,i+1 = rc,i,x cos(ΩpΔt) − rc,i,y sin(ΩpΔt) + V ′
c,i,xΔt

+
1

2
DtV

′
p,i,xΔt2 +

1

6
DttV

′
p,i,xΔt3 (B9)
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yp,i+1 = rc,i,y cos(ΩpΔt) + rc,i,x sin(ΩpΔt) + V ′
c,i,yΔt

+
1

2
DtV

′
p,i,yΔt2 +

1

6
DttV

′
p,i,yΔt3. (B10)

We then add the background flow state back into the field
variables used in Phurbas to calculate time derivatives for all
fields in the usual inertial reference frame with V not V′. Then,
to transform the time derivatives to time derivatives of the
perturbation velocity we use

DtV
′
p,i+1,x = DtVp,i+1,x + Ω2

prp,i+1,x (B11)

DtV
′
p,i+1,y = DtVp,i+1,y + Ω2

prp,i+1,y (B12)

DttV
′
p,i+1,x = DttVp,i+1,x − Ω3

prp,i+1,y (B13)

DttV
′
p,i+1,x = DttVp,i+1,x + Ω3

prp,i+1,x . (B14)

The perturbation velocity V can be integrated directly using
these perturbation time derivatives. Using the normal corrector
for the field variables and the perturbation velocity, the corrector
step for position is then

xc,i+1 = rc,i,x cos(ΩpΔt) − rc,i,y sin(ΩpΔt)

+
1

2
(V ′

c,i,x +V ′
c,i+1,x)Δt+

1

10
(DtV

′
p,i,x − DtV

′
p,i+1,x)Δt2

+
1

120
(DttV

′
p,i,x + DttV

′
p,i+1,x)Δt3 (B15)

yc,i+1 = rc,i,y cos(ΩpΔt) + rc,i,x sin(ΩpΔt)

+
1

2
(V ′

c,i,y +V ′
c,i+1,y)Δt+

1

10
(DtV

′
p,i,y − DtV

′
p,i+1,y)Δt2

+
1

120
(DttV

′
p,i,y + DttV

′
p,i+1,y)Δt3. (B16)

To prepare for the next step, it is necessary to shift the
perturbation velocity and time derivatives into the correct frame
that will be used for the next step. The new frame at the corrected
position (xc,i+1, yc,i+1) has radius components (rc,i+1,x , rc,i+1,y)
and the angular velocity of the background flow at this radius is
Ωc. The transformations made to these quantities are

V ′
c,i+1,x → V ′

c,i+1,x − rp,i+1,yΩp + rc,i+1,yΩc (B17)

V ′
c,i+1,y → V ′

c,i+1,y + rp,i+1,xΩp − rc,i+1,xΩc (B18)

DtV
′
c,i+1,x → DtV

′
c,i+1,x − rp,i+1,xΩ2

p + rc,i+1,xΩ2
c (B19)

DtV
′
c,i+1,y → DtV

′
c,i+1,y − rp,i+1,yΩ2

p + rc,i+1,yΩ2
c (B20)

DttV
′
c,i+1,x → DttV

′
c,i+1,x + rp,i+1,yΩ3

p − rc,i+1,yΩ3
c (B21)

DttV
′
c,i+1,y → DttV

′
c,i+1,y − rp,i+1,xΩ3

p + rc,i+1,xΩ3
c . (B22)

This shifts V′ into the accelerating reference frame used for the
following predictor step.

APPENDIX C

SECOND TIME DERIVATIVES OF MHD EQUATIONS

For the second-order predictor-corrector scheme Section 3.3
we need both the first and second Lagrangian time derivatives of
the MHD Equations (1)–(4). This appendix gives the formulae
for the required second time derivatives.

The form for a Lagrangian time derivative Dt in terms of
partial derivatives ∂ is

Dt∂q = ∂t∂q + V · ∇q (C1)

= ∂t∂q + ∂[V · ∇q] − ∂Vi∂iq (C2)

= ∂t∂j q + ∂j [Vi∂iq] − (∂jVi)(∂iq) (C3)

= ∂Dtq − (∂Vi)(∂iq). (C4)

Applying this to the MHD Equations (1)–(4) gives the second
time derivatives needed for the second-order predictor-corrector
scheme. We start with the velocity equation (Equation (1)).
Taking its Lagrangian time derivative, the first term on the right-
hand side becomes

Dt (−ρ−1∂jP ) = −ρ−1(∂jDtP − ∂jVa∂aP ) + ρ−2(Dtρ)∂jP .

(C5)

Inserting this, the second derivative of velocity is

DttVj = − ρ−1(∂jDtP − ∂jVi∂iP ) + ρ−2(∂jP )DtP

+ Dt (ρ
−1(εjabεacd (∂cBd )Bb)). (C6)

This equation can be further reduced. The two pressure-
dependent terms depend on the equation of state. For a gamma-
law equation of state, P = (γ − 1)σ ,

DtP = (γ − 1)Dtσ = (γ − 1)(−(σ + P )∂iVi), (C7)

and so

∂jDtP = (γ − 1)(−(∂jσ + ∂jP )∂aVa − (σ + P )∂ajVa). (C8)

For an isothermal equation of state P = c2
s ρ,

DtP = c2
s Dtρ = c2

s (−ρ∂iVi), (C9)

and so

∂jDtP = c2
s (−∂jρ∂aVa − ρ∂ajVa). (C10)

The magnetic term reduces to

Dt (ρ
−1(εjabεacd (∂cBd )Bb)) = (εjabεacd (∂cBd )Bb)(−ρ−2Dtρ)

+ ρ−1(εjabεacd (((∂cBe)∂eVd + Be∂ceVd − (∂cBd )∂eVe

− Bd∂ceVe − (∂cVe)∂eBd )Bb + (∂cBd )DtBb)), (C11)

while the Lagrangian time derivative of the gravitational force

Dt (+Gj ) = ∂tGj + Vi∂iGj . (C12)
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Taking the Lagrangian time derivative of the induction equa-
tion (Equation (2)) gives

DttBj = (DtBi)∂iVj + Bi(∂iDtVj − ∂iVk∂kVj )

− (DtBj )∂iVi − Bj (∂iDtVi − ∂iVk∂kVi). (C13)

The Lagrangian time derivative of the internal energy equation
is

Dttσ = −(σ + P )(∂iDtVi − ∂iVj ∂jVi) − (Dtσ + DtP )∂iVi,

(C14)

where the required pressure-dependent expressions have already
appeared above. If we have a barotropic or isothermal equation
of state then this equation is not used, of course. Finally, the
Lagrangian derivative of the continuity equation (Equation (4))
is

Dttρ = −(Dtρ)(∂iVi) − ρ(∂iDtVi − ∂iVj ∂jVi). (C15)

The second term on the right-hand side can be expanded as

∂iDtVi = εiabεacd (−ρ−2(∂cBd )Bb∂iρ

+ ρ−1(∂icBd )Bb + ∂cBd∂iBb)

+ ρ−2∂iP ∂iρ − ρ−1∂iiP + ∂iGi. (C16)
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