![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
---|---|---|---|---|---|
![]() |
![]() |
---|---|
Charge = Q Coulombs Voltage = V Volts Energy = E = VQ Joules Time = T seconds Current = I = Q/T Amperes Resistance = R = V/I Ohms Power = P = QV/T Watts = IV = V2/R = I2R Ohm's Law: V = IR
![]() |
![]() |
---|---|
In a superconductor, electrons move without interference.
In a resistor, electrons collide with atoms and lose energy.
Resistance (Ohms) Copper wire .02 1 meter long and 1 mm in diameter 1 km power line .03 AA battery .1 Internal resistance Light bulb 200 Human 10000
![]() |
---|
Voltage = V Volts Capacitance = C Farads Total energy = E = ½ C V2 Joules Effective = Ee = ¼ C V2 JoulesNot all of the energy in a capacitor is harnessable because the voltage diminishes as the charge diminishes, hence the effective energy is less than the total energy.
A = Plate area Z = Plate spacing Ke = Electric force constant = 8.9876e9 N m2 / C2 Q = Max charge on the plate (Coulombs) Emax= Max electric field = 4 Pi Ke Q / A V = Voltage between plates = E Z = 4 Pi Ke Q Z / A En = Energy = .5 Q V = .5 A Z E2 / (4 π Ke) e = Energy/Volume = E / A Z = .5 E2 / (4 π Ke) q = Charge/Volume = Q / A / Z C = Capacitance = Q/V = (4 Pi Ke) A/Z (Farads) c = Capacitance/Volume = C / A / Z = (4 Pi Ke) Emax2 / V2 Eair= Max electric field in air= 3 MVolt/meter k = Dielectric factor = Emax / Eair Continuum Macroscopic Energy/Volume = .5 E2 / (4 Pi Ke) <-> Energy = .5 C V2 = .5 q V = .5 Q V c = (4 Pi Ke)-1 Emax2 / V2 <-> C = (4 Pi Ke)-1 A / ZA capacitor can be specified by two parameters:
The maximum electric field is equal to the max field for air times a dimensionless number characterizing the dielectric
Eair = Maximum electric field for air before electical breakdown Emax = Maximum electric field in the capacitor Rbohr= Bohr radius = Characteristic size of atoms = 5.2918e-11 m = hbar2 / (ElectronMass*ElectronCharge2*Ke) Ebohr= Bohr electric field = Field generated by a proton at a distance of 1 Bohr radius = 5.142e11 Volt/m Maximum energy density = .5 * 8.854e-12 Emax2 Emax (MVolt/m) Energy density (Joule/kg) Al electrolyte capacitor 15.0 1000 Supercapacitor 90.2 36000 Bohr limit 510000 1.2e12 Capacitor with a Bohr electric field
![]() |
---|
White: High conductivity Red: Low conductivity
Electric Thermal Density Electric C/Ct Heat Heat Melt $/kg Young Tensile Poisson Brinell conduct conduct conduct/ cap cap number hardness (e7 A/V/m) (W/K/m) (g/cm^3) Density (AK/VW) (J/g/K) (J/cm^3K) (K) (GPa) (GPa) (GPa) Silver 6.30 429 10.49 .60 147 .235 2.47 1235 590 83 .17 .37 .024 Copper 5.96 401 8.96 .67 147 .385 3.21 1358 6 130 .21 .34 .87 Gold 4.52 318 19.30 .234 142 .129 2.49 1337 24000 78 .124 .44 .24 Aluminum 3.50 237 2.70 1.30 148 .897 2.42 933 2 70 .05 .35 .245 Beryllium 2.5 200 1.85 1.35 125 1.825 3.38 1560 850 287 .448 .032 .6 Magnesium 2.3 156 1.74 1.32 147 1.023 1.78 923 3 45 .22 .29 .26 Iridium 2.12 147 22.56 .094 144 .131 2.96 2917 13000 528 1.32 .26 1.67 Rhodium 2.0 150 12.41 .161 133 .243 3.02 2237 13000 275 .95 .26 1.1 Tungsten 1.89 173 19.25 .098 137 .132 2.54 3695 50 441 1.51 .28 2.57 Molybdenum 1.87 138 10.28 .182 136 .251 2896 24 330 .55 .31 1.5 Cobalt 1.7 100 8.90 .170 .421 1768 30 209 .76 .31 .7 Zinc 1.69 116 7.14 .388 693 2 108 .2 .25 .41 Nickel 1.4 90.9 8.91 .444 1728 15 Ruthenium 1.25 117 12.45 2607 5600 Cadmium 1.25 96.6 8.65 594 2 50 .078 .30 .20 Osmium 1.23 87.6 22.59 .130 3306 12000 Indium 1.19 81.8 7.31 430 750 11 .004 .45 .009 Iron 1.0 80.4 7.87 .449 1811 211 .35 .29 .49 Palladium .95 71.8 1828 Tin .83 66.8 505 22 47 .20 .36 .005 Chromium .79 93.9 .449 2180 Platinum .95 .133 2041 Tantalum .76 .140 3290 Gallium .74 303 Thorium .68 Niobium .55 53.7 2750 Rhenium .52 .137 3459 Vanadium .5 30.7 2183 Uranium .35 Titanium .25 21.9 .523 1941 Scandium .18 15.8 1814 Neodymium .156 1297 Mercury .10 8.30 .140 234 Manganese .062 7.81 1519 Germanium .00019 1211 Diamondiso 10 3320 Diamond e-16 2200 .509 Nanotube 10 3500 Carbon nanotube. Electric conductivity = e-16 laterally Tube bulk 200 Carbon nanotubes in bulk Graphene 10 5000 Graphite 2 400 .709 Natural graphite Al Nitride e-11 180 Brass 1.5 120 Steel 45 Carbon steel Bronze .65 40 Steel Cr .15 20 Stainless steel (usually 10% chromium) Quartz (C) 12 Crystalline quartz. Thermal conductivity is anisotropic Quartz (F) e-16 2 Fused quartz Granite 2.5 Marble 2.2 Ice 2 Concrete 1.5 Limestone 1.3 Soil 1 Glass e-12 .85 Water e-4 .6 Seawater 1 .6 Brick .5 Plastic .5 Wood .2 Wood (dry) .1 Plexiglass e-14 .18 Rubber e-13 .16 Snow .15 Paper .05 Plastic foam .03 Air 5e-15 .025 Nitrogen .025 1.04 Oxygen .025 .92 Silica aerogel .01 Siemens: Amperes^2 Seconds^3 / kg / meters^2 = 1 Ohm^-1For most metals,
Electric conductivity / Thermal conductivity ~ 140 J/g/K
Teslas Field generated by brain 10-12 Wire carrying 1 Amp .00002 1 cm from the wire Earth magnetic field .0000305 at the equator Neodymium magnet 1.4 Magnetic resonance imaging machine 8 Large Hadron Collider magnets 8.3 Field for frog levitation 16 Strongest electromagnet 32.2 without using superconductors Strongest electromagnet 45 using superconductors Neutron star 1010 Magnetar neutron star 1014
The critical electric field for electric breakdown for the following materials is:
MVolt/meter Air 3 Glass 12 Polystyrene 20 Rubber 20 Distilled water 68 Vacuum 30 Depends on electrode shape Diamond 2000
Relative permittivity is the factor by which the electric field between charges is decreased relative to vacuum. Relative permittivity is dimensionless. Large permittivity is desirable for capacitors.
Relative permittivity Vacuum 1 (Exact) Air 1.00059 Polyethylene 2.5 Sapphire 10 Concrete 4.5 Glass ~ 6 Rubber 7 Diamond ~ 8 Graphite ~12 Silicon 11.7 Water (0 C) 88 Water (20 C) 80 Water (100 C) 55 TiO2 ~ 150 SrTiO3 310 BaSrTiO3 500 Ba TiO3 ~ 5000 CaCuTiO3 250000
A ferromagnetic material amplifies a magnetic field by a factor called the "relative permeability".
Relative Magnetic Maximum Critical permeability moment frequency temperature (kHz) (K) Metglas 2714A 1000000 100 Rapidly-cooled metal Iron 200000 2.2 1043 Iron + nickel 100000 Mu-metal or permalloy Cobalt + iron 18000 Nickel 600 .606 627 Cobalt 250 1.72 1388 Carbon steel 100 Neodymium magnet 1.05 Manganese 1.001 Air 1.000 Superconductor 0 Dysprosium 10.2 88 Gadolinium 7.63 292 EuO 6.8 69 Y3Fe5O12 5.0 560 MnBi 3.52 630 MnAs 3.4 318 NiO + Fe 2.4 858 CrO2 2.03 386
Resistivity in 10^-9 Ohm Meters
293 K 300 K 500 K Beryllium 35.6 37.6 99 Magnesium 43.9 45.1 78.6 Aluminum 26.5 27.33 49.9 Copper 16.78 17.25 30.9 Silver 15.87 16.29 28.7
All superconductors are described by the BCS theory unless stated otherwise.
Titan has a temperature of 94 Kelvin, allowing for superconducting equipment.
The temperature of Mars is too high at 210 Kelvin.
Electric quantities | Thermal quantities
|
Q = Charge Coulomb | Etherm= Thermal energy Joule
I = Current Amperes | Itherm= Thermal current Watts
E = Electric field Volts/meter | Etherm= Thermal field Kelvins/meter
C = Electric conductivity Amperes/Volt/meter | Ctherm= Thermal conductivity Watts/meter/Kelvin
A = Area meter^2 | A = Area meter^2
Z = Distance meter | Z = Distance meter^2
J = Current flux Amperes/meter^2 | Jtherm= Thermal flux Watts/meter^2
= I / A | = Ittherm / A
= C * E | = Ctherm * Etherm
V = Voltage Volts | Temp = Temperature difference Kelvin
= E Z | = Etherm Z
= I R | = Itherm Rtherm
R = Resistance Volts/Ampere = Ohms | Rtherm= Thermal resistance Kelvins/Watt
= Z / (A C) | = Z / (A Ct)
H = Current heating Watts/meter^3 |
= E J |
P = Current heating power Watts |
= E J Z A |
= V I |
Continuum quantity Macroscopic quantity
E <-> V
C <-> R = L / (A C)
J = C E <-> I = V / R
H = E J <-> P = V I
Gauge Diameter Continuous 10 second 1 second 32 ms Resistance
mm current current current current
Ampere Ampere Ampere Ampere Ohm/meter
0 8.3 125 1900 16000 91000 .00032
2 6.5 95 1300 10200 57000 .00051
4 5.2 70 946 6400 36000 .00082
6 4.1 55 668 4000 23000 .00130
12 2.0 20 235 1000 5600 .0052
18 1.02 10 83 250 1400 .021
24 .51 3.5 29 62 348 .084
30 .255 .86 10 15 86 .339
36 .127 .18 4 10 22 1.361
40 .080 1 1.5 8 3.441
Critical Critical Type
temperature field
(Kelvin) (Teslas)
Magnesium-Boron2 39 55 2 MRI machines
Niobium3-Germanium 23.2 37 2 Field for thin films. Not widely used
Magnesium-Boron2-C 34 36 Doped with 5% carbon
Niobium3-Tin 18.3 30 2 High-performance magnets. Brittle
Vanadium3-Gallium 14.2 19 2
Niobium-Titanium 10 15 2 Cheaper than Niobium3-Tin. Ductile
Niobium3-Aluminum
Technetium 11.2 2
Niobium 9.26 .82 2
Vanadium 5.03 1 2
Tantalum 4.48 .09 1
Lead 7.19 .08 1
Lanthanum 6.3 1
Mercury 4.15 .04 1
Tungsten 4 1 Not BCS
Tin 3.72 .03 1
Indium 3.4 .028
Rhenium 2.4 .03 1
Thallium 2.4 .018
Thallium 2.39 .02 1
Aluminum 1.2 .01 1
Gallium 1.1
Gadolinium 1.1
Protactinium 1.4
Thorium 1.4
Thallium 2.4
Molybdenum .92
Zinc .85 .0054
Osmium .7
Zirconium .55
Cadmium .52 .0028
Ruthenium .5
Titanium .4 .0056
Iridium .1
Lutetium .1
Hafnium .1
Uranium .2
Beryllium .026
Tungsten .015
HgBa2Ca2Cu3O8 134 2
HgBa2Ca Cu2O6 128 2
YBa2Cu3O7 92 2
C60Cs2Rb 33 2
C60Rb 28 2 2
C60K3 19.8 .013 2
C6Ca 11.5 .95 2 Not BCS
Diamond:B 11.4 4 2 Diamond doped with boron
In2O3 3.3 3 2
The critical fields for Niobium-Titanium, Niobium3-Tin, and Vanadium3-Gallium
are for 4.2 Kelvin.
Boiling point (Kelvin)
Water 273
Ammonia 248
Freon R12 243
Freon R22 231
Propane 230
Acetylene 189
Ethane 185
Xenon 165.1
Krypton 119.7
Oxygen 90.2
Argon 87.3
Nitrogen 77.4 Threshold for cheap superconductivity
Neon 27.1
Hydrogen 20.3 Cheap MRI machines
Helium-4 4.23 High-performance magnets
Helium-3 3.19
The record for Niobium3-Tin is 2643 Amps/mm^2 at 12 T and 4.2 K.
Mass Energy E/M Power P/M Price Energy/$ C Voltage
kg kJoule kJ/kg kWatt kW/kg $ kJoule/$ Farads Volts
PM-5R0V105-R .000454 .0062 13.8 5.7 .0011 1 5.0
Maxwell BCAP0350 .060 .638 10.6 .459 7.65 16 .040 350 2.7
Adafruit .135 .984 7.3 20 .049 630 2.5
BMOD0006E160B02 5.2 37.1 7.1 2.08 .40 1170 .032 5.8 160
XLM-62R1137-R 15 125.3 8.4 124.2 8.3 1396 .090 130 62.1
© Jason Maron, all rights reserved.
Data from Wikipedia unless otherwise specified.