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ABSTRACT

Magnetic field amplification in astrophysics ultimately requires an understanding of MHD turbulence. Kinetic
helicity has long been known to be important for large-scale field growth in forced MHD turbulence and has
been recently demonstrated numerically to be asymptotically consistent with slow mean field dynamo action in
a periodic box. Here we show numerically that the magnetic spectrum at and below the forcing scale is also
strongly influenced by kinetic helicity. We identify a critical value, , above which the magnetic spectrumfh, crit

develops maxima at a wavenumber of 1 scaleand at the forcing scale. For . the field peaks only at thef ! fh, crit

resistive scale. Kinetic helicity may thus be important not only for generating a large-scale field, but also for
establishing observed peaks in magnetic spectra at the forcing scale. The turbulent Galactic disk provides an
example where both large-scale (greater than the supernova forcing scale) fields and small-scale (less than or
equal to forcing scale, with peak at forcing scale) fields are observed. We discuss this and the potential application
to the protogalaxy, but we also emphasize the limitations in applying our results to these systems.

Subject headings: galaxies: magnetic fields — ISM: magnetic fields — methods: numerical — MHD —
stars: magnetic fields — turbulence

1. INTRODUCTION

The origin of magnetic fields and the dynamics of three-
dimensional magnetohydrodynamic (MHD) turbulence in as-
trophysical sources are problems of long-standing interest (e.g.,
Cowling 1957; Moffatt 1978; Parker 1979; Krause & Ra¨dler
1980; Zeldovich, Ruzmaikin, & Sokoloff 1984). The standard
in situ mean field dynamo (MFD) model (Moffatt 1978; Parker
1979; Krause & Ra¨dler 1980) of the large-scale (i.e., scales
greater than the turbulent forcing) magnetic field origin can be
thought of as a framework for understanding an inverse cascade
of magnetic helicity, initiated by a forcing of kinetic helicity
(Pouquet, Frisch, & Leorat 1975). While the role of kinetic and
magnetic helicities are important for in situ nonlocal inverse
cascade models of large-scale fields, or MFDs, the small-scale
(i.e., scales at or below the turbulent forcing scale) dynamo
does not explicitly require helicity to amplify the total magnetic
energy density (Zeldovich et al. 1983; Parker 1979). Nonhelical
forced turbulent amplification of the small-scale fields and fully
helical forced growth of large-scale fields have been recently
simulated (Cho & Vishniac 2001; Chou 2001; Brandenburg
2001; Maron & Cowley 2001).

But there is an important subtlety that has not yet been
addressed. Although numerical work generically shows that the
total energy of the small-scale field in turbulent media saturates
at nearly equipartition with the kinetic energy spectrum, non-
helical small-scale dynamos produce a peak of the magnetic
energy spectrum on the resistive scale for magnetic Prandtl
number of≥1, not on the forcing scale (Chou 2001; Maron &
Cowley 2001). This contradicts, for example, observations of
the Galactic magnetic field, which has a peak in the spectrum
on the turbulent forcing scale (Beck et al. 1996), and maximally
helical simulations (Brandenburg 2001). Here we show that
forcing with varying levels of fractional kinetic helicity affects
the overall spectral shape at largeand small scales.
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In § 2 we discuss the equations and the simulations. In § 3
we give the results, and in § 4 the interpretations. We conclude
in § 5.

2. EQUATIONS AND NUMERICAL SCHEME

We investigate forced helical MHD turbulence. We write the
magnetic field in velocity units and so define ,�b { B/ 4p
where B is the magnetic field. Incompressibility is assumed
throughout, so we set density to , and , wherer p 1 � · v p 0
v is velocity. We include the thermal pressureP and the mag-
netic pressure in the total pressure and assume2p p P � b /2
isotropic kinetic and magnetic viscosities . The MHD equa-nv

tions become

2� v p �v · �v � �p � b · �b � n� v, (1)t v

2� b p �v · �b � b · �v � n � b. (2)t b

To relatep to v andb, we take the divergence of equation (1),
which upon inversion, yields

3 ′d x (�v : �v � �b : �b)
p p . (3)� ′4p Fx � xF

A random forcing field with energy is generated at eache 7 Dtf

time step and is added to the existing velocity field, wheree f

is the average forcing power. The amplitudes of the forcing-
field Fourier modes are assigned according to a specified power
spectrum, with the energy selected from a Boltzmann distri-
bution. The mode phases are random within the constraint of
divergencelessness. We input kinetic helicity at thev · � � v
forcing wavenumber of by making a randomlys p k/2p p 4.5
determined subset of the Fourier modes maximally helical,
leaving the rest unchanged. The fraction of maximally helical
modes is , which we denote “fractional helicity.” In contrast,fh

simulations of Maron & Cowley (2001) invoked zero mean
magnetic field and zero mean kinetic helicity. Only fractional
random fluctuations of the kinetic helicity on the order of 10%
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Fig. 1.—Saturated kinetic and magnetic energy spectra for successive values
of . Simulations are A0, A4, A5, and A10. The kinetic spectra are identicalfh

for f ≤ 0.4h

Fig. 2.—Time sequence of kinetic and magnetic energy spectra for simu-
lation A10.

Fig. 3.—Evolution of the magnetic helicity as a function of for simulationsfh

from series A. At , simulation A10 ( ) has developed a large-scalet p 7 f p 1h

magnetic field.

were present. The magnetic helicity was also initially zero and
subsequently fluctuated about zero at an amplitude of 10% of
the maximum. The equations of MHD are solved spectrally.
The turbulence is incompressible, and the boundaries are pe-
riodic. (Including compressibility, while ultimately important
for detailed applications, is not expected to have a dramatic
effect on the qualitative conclusions herein regarding the role
of helicity.) Wavenumbers and physical scales are related by

. Viscosity and resistivity are of the type (2 2lk p 2p k n∇ vv

and ). The code is exhaustively discussed in Maron &2n∇ bb

Goldreich (2001). We note that at each time step, the time
derivative of the magnetic helicity is equal to the volume in-
tegral of the current helicity times the resistivity. The helicity
conservation equation is satisfied and this is important in what
follows.

The other key parameters are as follows: the magnetic
Prandtl number is , which is the ratio of the2 2Pr p n /n ∼ l /lb n nv bv

viscosity to magnetic diffusivity, where and are thel ln nbv

viscous and resistive scales, respectively. We denote andvl

as the speed and magnetic field at scalel and and asb v ll ff

the forcing-scale rms velocity and forcing scale, respectively.
When , the scales have the ordering .Pr ≥ 1 l 1 l ≥ lf n nbv

3. RESULTS

We show results here for a selection of 643 simulations,
which is sufficient to identify the basic effects of fractional
helicity on the location of energy peaks. The ranges from 0fh

to 1 by increments of 0.1 for simulations A0 through A10. For
all A0–A10, we used a 643 grid, , ,�3s p 4.5 n p 3 # 10f v

, and .�3n p 1 # 10 Prp 3b

The usual kinetic and magnetic energy spectra are defined
as the quantities inside the energy integrals andE p E (s)ds∫v v

, respectively. The spectra for a range of valuesE p E (s)ds∫b b

of are shown in Figure 1. The time evolution of thef f ph h

case is shown in Figure 2, and the time growth of magnetic1
helicity is shown in Figure 3. Note in these figures that for

, the peak at the forcing scale grows, as doesf � f ∼ 0.5h h, crit

the large-scale field. For , the large-scale field decays,f ! fh h, crit

no peak appears at the forcing scale, and the magnetic helicity
in the box grows very weakly, if at all. Although we present
only cases in the figures, we also performed simulationsPr p 3
with and found that . Thus, we find thatPr p 9 f ∼ 0.7h, crit

increases with Pr.fh, crit

We checked for hysteresis by using the saturated state of the
simulation of Figure 3 as the initial condition for anotherf p 1h

simulation with . We found that the magnetic helicityf p 0.4h

subsequently decayed to the same value as in the simulation
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that started with a weak mean field with initial . Theref p 0.4h

was no evidence for hysteresis.

4. DISCUSSION

Forced helical turbulence was studied systematically in Pou-
quet et al. (1976) using the eddy-damped quasi-normal Mar-
kovian closure scheme (Orsag 1970). Forcing with kinetic he-
licity leads to segregation of magnetic helicity because the
magnetic helicity growth equation has a source term that de-
pends on the kinetic helicity. The kinetic helicity inputs one
sign of magnetic helicity at small scales, but the opposite sign
is generated on large scales. The growth of the large-scale field
represents a nonlocal inverse cascade of the magnetic helicity
from the forcing scale and can be interpreted as an MFD2a
(Pouquet et al. 1976; Brandenburg 2001; Blackman & Field
2001; Field & Blackman 2002; also Verma 2001). Averaged
over a periodic box, the time evolution of the total magnetic
helicity satisfies , whereA is the vector� AA · BS p �2n AJ · BSt b

potential andJ is the current density. If we divide intoAA · BS
small-scale and large-scale contributions, we can see that after
the large-scale helical field energy grows to , wheres2k B /ks s l

and l refer to the dominant small and large scales, the large-
scale magnetic helicity dominates (Fig. 3). The growth saturates
as long as there remains a net current helicity, but the growth
rate is resistively limited, implying a “slow” (decreases with
increasing ) MFD. The large-scale field growth of Figure 3knb

for all is slow in this sense. (Note, however, that theref ≥ fh h, crit

is a short initial “fast” phase. Field & Blackman 2002 and
Blackman 2002, discuss this in the context of a dynamical
quenching model, which fits Brandenburg 2001 and the results
therein and the asymptotic quenching of Gruzinov & Diamond
1994 and Bhattacharjee & Yuan 1995.)

The sign of the magnetic helicity of the growing large-scale
field is opposite to that of the kinetic helicity. This is consistent
with MFD theory if the kinetic helicity dominates thea effect
of the MFD: A positive kinetic helicity means thata would
be negative. But the growth of the magnetic helicity associated
with the large-scale field is proportional to (Brandenburg2aBl

2001; Blackman & Field 2001; Field & Blackman 2002) so
that a positive-input kinetic helicity that gives a negativea
produces a negative large-scale magnetic helicity. Figure 3
shows that is dominated by the large-scale contribution.AA · BS

That the large-scale field growth proceeds asymptotically
slowly, would seem to threaten the relevance of, e.g., the Gal-
axy, as it is commonly argued that the MFD of the Galaxy has
to be “fast” (see Ruzmaikin, Shukurov, & Sokoloff 1988; Zwei-
bel & Heiles 1997). Unlike a periodic box, real astrophysical
rotators have boundaries and shear and have helicity driven by
the combination of the underlying rotation and stratification
with a spatial variation in transport coefficients. So these dif-
ferences will ultimately need to be studied before results from
periodic box solutions like ours can be directly applied to as-
trophysical large-scale field growth (Blackman & Field 2000).
Also, the large-scale field for in the simulation be-f 1 fh h, crit

comes superequipartition, as seen in Figures 1 and 2, because
it is nearly force free. That being said, the enterprise of periodic
box simulations is very worthwhile; even comparing the dif-
ference between periodic boxes with more realistic simulations
will be important to our further understanding of MHD tur-
bulence, and it allows the demonstration of some principles
that emerge in the simplest possible forced nonlinear dynamo
system.

In spite of these caveats, the results of the present simulations
are provocative: the same determines both whether thefh, crit

large-scale field growsand whether a peak grows at the forcing
scale. The large-scale field growth and the presence of the small-
scale peak at the forcing scale appear to be intimately related.
Magnetic helicity undoubtedly also plays a role in the drain of
the small-scale peak from the resistive scales for . Con-f 1 fh h, crit

sider the role of magnetic helicity conservation in mode inter-
actions via a slightly more general version of the argument of
(Frisch et al. 1975): Suppose an initial state of maximal magnetic
helicity is confined to wavenumbers and , with ,k k k ! km n m n

and suppose the magnetic field dominates the energy at these
wavenumbers. We then have andE (k ) � E (k ) p E (k )b m b n T p

, whereH (k ) � H (k ) p E (k )/k � E (k )/k ≤ E (k )/kb m b n b m m b n n T p p

means the total energy. The last inequality can be satisfiedET

only if . This argument applies only when the scalesk ! k kp n m

and are magnetically dominated, although need not be (ak kn p

point not addressed in Frisch et al. 1975). An initial state for
which the field is dominant and therefore satisfies the validity
criterion is the small-scale saturated state shown in Figure 1 for

. We can reason that when sufficient magnetic helicity isf p 0h

imposed, it and its associated energy would drain from the small
scales, at least until the field reaches equipartition with the ve-
locity. This is qualitatively consistent with the observed deficit
in the magnetic energy from the largek region in Figures 1 and
2 for , as compared to .f 1 f f ! fh h, crit h h, crit

The growth of the actual peak in magnetic energy at the
forcing scale is also aided by the fact that a forced kinetic
helicity reduces the nonlinear transfer term in the Navier-Stokes
equation. The nonlinear term is . When2�v · �v p v � q � ∇v
helicity is present, the term is reduced. For subsonicv � q
turbulence, the contribution to the evolution equation should2v
be inconsequential. Thus, since the main cascade driver is re-
duced for helical turbulence, the kinetic energy requires more
time to cascade, providing a bit more time for this energy to
be transferred directly into stretching the magnetic field near
the input scale. Although a cascade of magnetic energy steadily
drains the field from the input scale, the hold up of the kinetic
energy cascade means that there is more time to resupply the
field to a larger amplitude before draining, compared to the

case.f ! fh h, crit

The total kinetic energy density for is fixed and isk ≥ kf

always larger than the total magnetic energy density fork ≥
. If , then there is a significant nonhelical part of thek f ! ff h h, crit

field that feels no tendency to inverse cascade. This fraction
piles up quickly on the small scales (Chou 2001; Maron &
Cowley 2001). If this fraction dominates, then the spectrum
will be dominated by the nonhelical turbulence dynamics. If

, the magnetic energy associated with the helicity,f 1 fh h, crit

which inverse cascades, dominates. A lower limit on canfh, crit

be found from modeling the large-scale field growth as an
dynamo that has a growth rate of , whereb is tur-2a a � bs1

bulent diffusion and is the growing large-scale wave-s p 11

number. But initiallya andb have their kinematic values and
, and so initial growth requires at leasta/s b ∼ 2f s /(3s )1 h f 1

. This is roughly consistent with our re-f 1 s /s ∼ 0.33p fh 1 f crit

sults within small factors on the order of 1.
At the risk of applying our “slow” dynamo spectral shape

results too cavalierly, we consider the implications for the Gal-
axy. The Galactic field has both a large-scale (�2 kpc) and a
small-scale component (�100 pc) (e.g., Zweibel & Heiles 1997).
The small-scale field (which has a magnitude about a few times
larger than the large-scale field) appears to have a peak at the
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forcing scale, as does the kinetic energy (Armstrong, Rickett, &
Spangler 1995), and the two are in near equipartition withv ∼

km s�1. Ignoring the “slow” versus “fast” issue for theb ∼ 10
moment, our results would imply that the Galactic magnetic
spectrum (with its small-scale peak at the forcing scale) is con-
sistent only with turbulence forced with . Note that wef 1 fh h, crit

have been considering only externally forced turbulence, as op-
posed to self-generated turbulence from shear. This particular
assumption, at least, is consistent with the Galaxy, where su-
pernovae are the primary driver (Sellwood & Balbus 1999).
(Given that our box dynamo is “slow,” we should note that well-
motivated analytic interpretations for generation of “fast” large-
scale magnetic energy in sheared rotators that appeal less ex-
plicitly to kinetic helicity, or not at all, have been studied [see
Balbus & Hawley 1998; Vishniac & Cho 2001], as do specific
proposals for how boundaries might enable fast helicala-Q
dynamos [Blackman 2002]. We do not discuss these further, but
note that in the Galaxy, a net magnetic flux in the Galactic disk
in addition to magnetic energy seems to be needed.)

Our results might also suggest that kinetic helicity plays a
role in the protogalactic small-scale dynamo model (Kulsrud
et al. 1997) of the large-scale Galactic field. In this model, the
large-scale field of the Galaxy results from gravitational col-
lapse and flux freezing of the small-scale protogalactic field.
The model requires that small-scale dynamos generate signif-
icant power at the forcing scale, and our results would suggest
this is possible only in plasmas when .Pr ≥ 1 f ≥ fh h, crit

5. CONCLUSIONS

The magnetic spectrum of MHD turbulence forced in a pe-
riodic box with fractional kinetic helicity above a critical value

saturates with two peaks: a large-scale peak and a peakfh, crit

at the forcing scale, when . If , there is only onePr ≥ 1 f ! fh h, crit

peak in the spectrum, and it is at the resistive scale. Although
the turbulence is not strictly Alfve´nic for any , it is muchfh

more nearly Alfvénic for larger . The range of scales, thefh

boundary conditions, and the actual nature of helical forcing
pose obstacles when comparing nonsheared periodic box sim-
ulations with real astrophysical rotators. Nevertheless, the im-
portant qualitative implication of our results is that helical forc-
ing not only influences the large-scale magnetic field spectra
of forced turbulent systems, but may also help account for
observed peaks at the forcing scale.
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