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ABSTRACT

The Galactic magnetic field has an energy density comparable to that of the interstellar medium turbulence and
a coherence spanning the Galaxy. It is not known if this field was formed before, during, or after the Galaxy.
However, it is often assumed to originate from a turbulent dynamo process. We investigate the early stages of a
Galactic dynamo when the dynamics is well approximated by homogeneous turbulence. Our simulations show
that homogeneous magnetized turbulence with large Prandtl number yields magnetic energy at the small,
resistive scale rather than at the Galactic scale. Thus, additional phenomena—perhaps helicity generated from
Galactic rotation, stratification, and the differential rotation of the disk—are needed to explain the observed field.
We simulate the growth of magnetic energy in forced nonhelical turbulence from an initially weak value until it
saturates with the same energy density as the turbulence. When the field is dynamically weak, the simulations
agree with the kinematic theory. In the long-term saturated state, the magnetic field is strong enough to modify
the turbulence. This is the magnetohydrodynamic (MHD) analog of the Kolmogorov problem for hydrodynamic
turbulence. The nature of the back-reaction is to neutralize the net shear (stretching) in small-scale eddies that are
less energetic than the magnetic field. Only the forcing-scale eddies remain energetic enough to shear and
cascade the magnetic field. The magnetic field at all scales therefore forward-cascades at the forcing timescale
through spectrally nonlocal interactions with the forcing-scale eddies. Furthermore, the magnetic field folds into
a reduced-tension state where field-line curvature anticorrelates with intensity. Direct consequences of these
statements are that the magnetic spectrum is largely independent of viscosity and that the magnetic energy is
located at the small, resistive scale.

Subject headings: ISM: magnetic fields — methods: numerical — MHD — turbulence

1. INTRODUCTION

Microgauss magnetic fields are observed in spiral galaxies
and between galaxies in clusters (Zweibel & Heiles 1997;
Kronberg 1994; Vallee 1998; Beck et al. 1996). In cluster
plasmas the fields have coherence lengths of up to 10 kpc
(Taylor et al. 1999; Carilli & Taylor 2002). In galaxies the
magnetic fields are ordered over the whole galaxy and have
energy densities comparable to the turbulent energy density. It
is not known if the fields originated before, during, or after
galaxy formation. Most current research centers around
dynamo theories where turbulent motions amplify the field
from an initial weak seed field to its present strength and
structure (Ruzmaikin et al. 1988; Kulsrud 1999; Zweibel &
Heiles 1997; Beck et al. 1996). Indeed, some kind of dynamo
seems to be the most plausible explanation of the observa-
tions. However, despite considerable progress over 40 years,
the dynamo theory is not complete and thus the history of
Galactic and extragalactic fields is uncertain. The Galactic
dynamo (if it exists) differs from the more familiar solar
dynamo (Mestel 1999) and geodynamo (Glatzmaier & Roberts
1995) in two key ways. First, the disk geometry of the Galaxy
clearly affects the magnetic field dynamics. Second, the ratio
of viscosity to resistivity, the magnetic Prandtl number (Pr), is
of order 1014 in the warm partially ionized interstellar medium

but only 1–10�2 in the solar convection zone. The Prandtl
number of a typical protogalactic plasma is also large
( Pr � 1019). In this paper we show that high Prandtl number
dynamos are profoundly different from low Prandtl number
dynamos.

The Galactic spatial scales and their associated timescales
suggest a possible scenario for field growth. Elements of this
scenario are suggested by the work of Kulsrud & Anderson
(1992) and, particularly for the later stages (stage 3; see
below), Field, Blackman, & Chou (1999). We take this
scenario as a framework for discussion and not as proven.
Indeed our calculations already expose flaws in the scenario.
First, consider the important space scales and timescales
from the largest to the smallest. The Galaxy itself is about
1010 yr old, 10–15 kpc (=kg) across, and rotates with velocity
�200 km s�1 once every 2� 108 yr. Supernovae produce
random velocities of order 10 km s�1 on a scale of 100 pc
(=kf) and with timescales of order 107 yr. Approximately
5%–15% of the kinetic energy at the supernova scale is helical
(Moffatt 1978). Without a magnetic field the kinetic energy
cascades to small viscous scales k�, where k� � 0:1 0:01 pc.
The viscous eddies turn over on a timescale �� � 105 yr.
Finally, the smallest scale is the resistive scale k�, which is
typically 108–1010 cm, truly negligibly small. The interstellar
medium is, of course, very inhomogeneous: we have taken
values of the physical parameters from the warm partially
ionized medium. For reference the typical values of these1 For Edward Burns, 1970–2002.
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parameters are given in Table 1. It should be noted that
although conditions in the other phases of the interstellar
medium are quite different, the magnetic Reynolds number
and Prandtl number are large in all phases.

We assume that the initial seed field is very weak. Such weak
fields can be made in many different ways (see, for instance,
Gnedin, Ferrara, & Zweibel 2000, who find that fields of order
10�18 G can be made in shocks during the reionization phase of
structure formation). Thus, we need about 30 e-foldings to
reach the present Galactic field strength of 3� 10�6 G. We
divide the growth of Galactic fields into three stages:

1. The kinematic small-scale field dynamo.—During this
stage the field is too weak to affect the velocity at any scale.
Since the eddies at the viscous scale turn over the fastest, they
amplify the field at first. Therefore, the exponential growth
time is approximately 105 yr in our Galaxy. Since the viscous-
scale eddies have negligible helicity, the field growth is driven
by homogeneous isotropic turbulence. This growth was first
predicted by Batchelor (1950) and later by Kazantsev (1968),
who also investigated the structure of the field, and still more
recently Kulsrud & Anderson (1992) gave a spectral theory of
the process. In the 1990s the kinematic theory was consider-
ably refined (Schekochihin, Boldyrev, & Kulsrud 2002a;
Chertkov et al. 1999), and it is well understood. Much of what
is understood comes from the short correlation time kinematic
model in which the velocity correlation time is assumed in-
finitesimal. The important features of the magnetic field evo-
lution in this model are as follows: First, the magnetic spectrum
Ebðk; tÞ rises as k3/2 at all k much less than the peak, kp. Second,
for kTkp, Ebðk; tÞ grows as exp ð3�t=4Þ at fixed k with �
roughly the turnover rate of the viscous-scale eddies. The peak
wavenumber, kp, increases as kp / exp ð3�t=5Þ until it reaches,
and remains at, the resistive scale [k� � 1=ðk�Þ � ð�=�Þ1=2,
with � the resistivity]. Finally, the magnetic field is in a folded
state (Schekochihin et al. 2002c), where the variation of B
along itself (h B G HBj j2i) is much smaller than the variation of B
across itself (h B��� ðH ��� BÞj j2i). All these features of the
kinematic phase evolution are seen, at least qualitatively, in the
early stages of our simulations. Clearly, the field predicted by
the small-scale field dynamo is on scales much smaller than the
observed Galactic field. Stage 1 is necessarily a transitory
stage. When the magnetic field energy becomes comparable to
the energy in the viscous-scale eddies, the kinematic stage
(stage 1) ends. In the Galaxy this corresponds to a magnetic
field strength of approximately 0.1 �G.

2. Approach to equipartition.—While magnetic forces at
the end of stage 1 can change the viscous-scale flows, they are
not strong enough to affect the more energetic larger scale
motions. The strain of these larger scale motions continues to
amplify the field. One would expect that these scales act on the
field in a way similar to the viscous-scale eddies in stage 1, but
on a slower timescale. As the field grows, more of the velocity
spectrum is affected by the magnetic forces (see x 5). Even-
tually on a timescale of a few large eddy turnover times the
magnetic energy becomes of order the kinetic energy of the
large stirring-scale motions. In the Galaxy the timescale for this
is the supernova stirring time, roughly 107 yr. On this timescale
the Galactic rotation and the helical component of the turbu-
lence have negligible effect. The growth up to the end of this
stage could alternatively have taken place in the protogalactic
plasma where rotation is negligible.
This stage is poorly understood and is the main subject of this

paper. Meneguzzi, Frisch, & Pouquet (1981) computed the tur-
bulent amplification of magnetic fields in a Pr � 1 plasma.
They showed that without helicity the magnetic energy grew
until it saturated at about 15% of the kinetic energy. Their
magnetic and kinetic spectra resemble our lower resolution,
Pr � 1, computations (for example, see Fig. 13 below). There is
no evidence from these simulations (or our own) that there is
energy equipartition scale by scale. In fact, in the Pr 31 case,
most of the magnetic energy is in the scales between the viscous
and (smaller) resistive scale. However, almost none of the ki-
netic energy is contained in the subviscous scales. The saturated
magnetic and kinetic energies are very nearly equal at Pr 31.

Recently there has been considerable interest in simulating
Alfvén wave turbulence (Maron & Goldreich 2001; Kinney &
McWilliams 1998; Cho & Vishniac 2000a, 2000b; Muller &
Biskamp 2000). Identical magnetic and kinetic power-law spectra
(k�� with � ¼ 1:5 1:7) are seen. These simulations start with
magnetic energy on the large scale (particularly in the uniform field
component) that is stronger or of order the kinetic energy of the
forcing scale. The uniform field component cannot be changed by
the flow and thus remains strong throughout. Dynamo simulations
must, of course, start with small fields (in the uniform and non-
uniform field). The spectra we generate are not like the Alfvén wave
spectra; specifically, they are dominated by small-scale field.
Clearly, the Alfvén wave turbulence model does not describe the
field at the end of stage 2. It is, however, of considerable interest in
describing the turbulence in the interstellar medium when a large-
scale field is already present.
In summary, at the end of stage 2 the magnetic energy is of

order the kinetic energy of the forcing motions and most of the
magnetic energy is in the subviscous scales.
3. Large-scale field growth.—The final stage of the magnetic

field evolution is growth of the field on the largest scale, the
Galactic scale. It is believed (Pouquet et al. 1976; Meneguzzi,
Frisch, & Pouquet 1981; Field et al. 1999; Brandenburg 2001)
that the helicity ( v G H ��� vh i) of the turbulence at the supernova
scale plays a key role in this ‘‘inverse cascade.’’ Indeed, Field,
Blackman, & Chou (1999) have argued that this stage is very
similar to the kinematic (� -!) mean field dynamo (Parker 1979;
Moffatt 1978; Ruzmaikin, Shukurov, & Sokoloff 1988).

The estimated timescale for the mean field dynamo in the
Galaxy is 2� 108 yr (Field et al. 1999; Kulsrud 1999). This
timescale is controlled by the slow rotation of the Galaxy that
gives ! and drives the helicity in the turbulence to give � . The
fraction of the turbulent energy in the Galaxy that is helical
is about 5%–15%. The crucial question is how the mean

TABLE 1

Galactic Turbulence Parameters

Quantity Galactic Protogalactic

Magnetic coherence scale kg (cm) ..... 1022 . . .

Forcing scale kf (cm) .......................... 1020–1021 1023

Forcing velocity vf (cm s�1) .............. 106 107

Viscous scale k� (cm) ......................... 1017 1022

Resistive scale k� (cm) ....................... 108–1010 1012

Viscosity � (cm2 s�1).......................... 1020–1021 1029

Magnetic diffusivity � (cm2 s�1) ........ 107 1010

Prandtl number Pr............................... 1014 1019

Neutral free path knn (cm) .................. 1015 . . .

Ion free path kii (cm) .......................... 1013 1022

Temperature T (K) .............................. 104 107

Proton density n (cm�3) ..................... 1 10�2
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magnetic field grows in the presence of small-scale fields
generated by the more vigorous nonhelical flows. Indeed there
is an ongoing debate about the effect of small-scale fields on
the mean field dynamo: several authors have claimed a
quenching (suppression) of the alpha effect (Cattaneo &
Hughes 1996; Gruzinov & Diamond 1994; Bhattacharjee &
Yuan 1995). Most of these discussions focus on the evolution
of the magnetic helicity A GBh i, since the large-scale field that
is generated by the � -! dynamo is helical. It is not clear,
however, that the observed fields have significant magnetic
helicity. Magnetic helicity evolves according to @t A GBh i ¼
� B GJh i plus boundary terms. In the absence of flux through
boundaries, resistivity limits the formation of a net magnetic
helicity to well over a Hubble time (Brandenburg 2001). In a
sequence of papers Blackman, Field, and Maron have argued
that suppression of early-time mean field growth does not take
place (Blackman & Field 2000, 2002; Field & Blackman
2002; Maron & Blackman 2002). They discuss two possibil-
ities for forming a large-scale helical field on the Galactic
dynamical time of �2� 108 yr, either by expelling the
opposite sign of magnetic helicity from the Galaxy or by
exchanging helicity between the forcing supernova and the
Galactic scale. Furthermore, Maron & Blackman (2002) show
that the helical dynamo could conceivably occur within a
Hubble time even for small helical fractions of �10% and for
large Prandtl number. It is clear that this stage is dependent
on the disk geometry and physical conditions in the Galaxy
and therefore simulations in simplified models may have
limitations.

The objective of this paper is to simulate the evolution of the
field in stages 1 and 2. We use a simple scalar viscosity and
resistivity MHD model of the plasma: this is a simplification of
the dissipative processes. For example, a more realistic model
for the warm partially ionized interstellar medium would
include ambipolar diffusion (Zweibel & Brandenburg 1997),
and the fully ionized protogalactic plasmas should have a
tensorial viscosity of the Braginskii form (Braginskii 1965;
Malyshkin & Kulsrud 2002). Such issues will be addressed in
future papers. The stirring of the plasma (by supernovae in the
Galaxy and turbulence created by collapse in the protogalaxy)
is clearly compressible, but the vortical part of the flow is
probably well modeled by incompressible motions. For this
reason and computational tractability, we use incompressible
MHD equations. In stage 1 we find that the field grows
exponentially with a k3/2 spectrum terminated by the resistive
scale, in accord with the Kulsrud-Anderson theory. There are
four key results from our stage 2 simulations. First, the energy
of the magnetic field grows to a saturated level equal to the
kinetic energy of the stirred flow. Second, the magnetic field
energy is contained in the small resistive scales. Third, the
predominant straining and folding of the field in saturation
comes from the stirring-scale motions. Fourth, the field is in
the form of long thin folds (stripes) where the variation of
B across itself is much faster than the variation of B along
itself.

2. A HEURISTIC MODEL OF NONLINEAR
MAGNETIC FIELD GROWTH

In this section we present a simple model of the magnetic
field growth. Numerical evidence for this model is presented
in the subsequent sections. We introduce many scales and
definitions, and for convenience these are summarized in
Table 2.

We take vk to be the velocity at scale k. The flow is forced at
scale kf with velocity vf and a timescale tf ¼ kf =vf . In the
weak-field limit (stage 1) the approximate form of vk has been
known since the seminal paper by Kolmogorov (1941).
Specifically, vk � vf ðk=kf Þ1=3 in the range k� < k < kf , where
k� is the viscous scale to be defined. The eddy turnover time at
scale k, tk � k=vk, increases with scale. At the viscous scale
the viscous damping time and the eddy turnover time are
comparable (t� � k2�=� � k�=v�). Thus,

k� � kf Re
�3=4; ð1Þ

where Re ¼ ðvf kf =�Þ is the Reynolds number and � is the
coefficient of viscosity. In the interstellar medium of our
Galaxy Re is in the range 104–106. The eddy turnover time at
the viscous scale is t� � tf Re

�1=2 (t� � 105 yr in our Galaxy),
and the viscous-scale velocity is v� � vf Re

�1=4.
Our model is based on the assumption that at a given time

there is a single scale that is amplifying the field most rapidly.
Let us call this the shearing scale and denote it ks. The velocity
at this scale is vs, and the eddy turnover time (shear timescale)
is ts ¼ ks=vs. The field is being amplified at a rate � � ð1=tsÞ.
The magnetic field is destroyed at the resistive scale k� where
growth is balanced by resistive diffusion, i.e., ts � k2�=�, with
� the coefficient of resistive diffusion. Thus,

k� ¼ ð�tsÞ1=2 ¼ kf ReMð Þ �1=2ð Þ ts

tf

� �1=2

; ð2Þ

where ReM ¼ ðvf kf =�Þ is the magnetic Reynolds number. In
the Galaxy ReM � 1019 1020 and the resistive scale is of
order 108–1010 cm. In truth the resistive scale is probably
unimportant since above the resistive scale other dissipative
and kinetic effects become important (Lithwick & Goldreich
2001). For example, at 1011 1013 cm ambipolar drift of the
plasma through the neutrals changes the field dynamics
(Zweibel & Brandenburg 1997; Kulsrud & Anderson 1992).

In the kinematic stage (stage 1) the eddies at the viscous
scale amplify the field most rapidly and therefore ks ¼ k�
and the growth rate � � 1=ts � 1=t� . The scale of the field
decreases at a similar exponential rate until limited by
dissipation (resistance in the computer code). The field at the
end of stage 1 is strong enough to affect the stirring eddies,
i.e., B2=ð4�Þ ¼ 1

2
�v2� (which in the Galaxy gives B � 0:1 �G).

The small-scale field is in the form of long folds of length k�
and width k� (see below; see also Schekochihin et al. 2002c).
This field resists bending in a similar way to a smooth field: its
response to shearing is somewhat like the wound elastic inside
baseballs and golf balls (Appendix C).

Now consider the growth when the magnetic field becomes
strong enough to become dynamically important (stage 2). We
assume that for k < ks the velocity is too weak to shear and
amplify the field, i.e., 1

2
�v2k < B2=ð8�Þ. For k > ks the veloc-

ities are approximately unaffected since 1
2
�v2k > B2=ð8�Þ.

Therefore, vk � vf ðk=kf Þ1=3 for k > ks: again the smaller the
kinematic velocity scale, the faster the eddy turnover. The
shearing scale is then the smallest scale that is still capable of
bending the field, i.e., 1

2
�v2s ¼ B2=ð8�Þ. Note that we have

compared vk with the total magnetic field, not just the field at
scale k. The evolution of the field is therefore given by

1

8�

dB2

dt
� vs

ks

B2

8�
� 1

2
�
v3s
ks

� 	: ð3Þ
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Note that 	 is the constant energy flux of the Kolmogorov
cascade. Equation (3) states that at scale ks, a significant
fraction of the cascading energy is converted into magnetic
energy. These heuristic scalings do not, of course, determine
the exact fraction of cascade energy that gets converted into
magnetic energy. Solving equation (3) with B2=ð8�Þ ¼ 1

2
�v2� at

t ¼ 0 gives

B2

8�
¼ 1

2
�v2� þ 	t ð4Þ

and ðts=tf Þ ¼ B2=ð4��v2f Þ. As expected, the shearing time and
scale increase during stage 2. When t � tf � ðkf =vf Þ, one
large-scale stirring time, the shear scale has reached the
forcing scale and B2=ð8�Þ � 1

2
�v2f . At this point the growth

ceases as shearing at all scales is suppressed by the field. This
does not mean that all motion is suppressed: one expects
Alfvén oscillations that exchange energy between the tangled
field and motion (Appendix C).

In our discussions so far we have ignored the structure of
the magnetic field; this obviously needs justification. As we
have already remarked, during the kinematic stage the field
grows at all scales but the field energy becomes peaked at
the small scales. In the course of amplification and entan-
glement, the field develops structure not identifiable in the
power spectrum. The structure of this field has been shown
(Schekochihin et al. 2002c) to be folded into a reduced-
tension state. We characterize this structure by the quantities

k2? ¼
�
ðB��� rrrr��� BÞ2

�
�
B4
� ; k2k ¼

�
ðB GrrrrBÞ2

�
�
B4
� ; ð5Þ

k2P ¼
rrrrB2=2

� �2D E
B4
� � ; k2o ¼

�
ðB Grrrr��� BÞ2

�
�
B4
� ; ð6Þ

and a scale measure of the spectrum,

k2b ¼
R
k2EbðkÞ dkR
EbðkÞ dk

: ð7Þ

The corresponding lengths are defined in the obvious way, i.e.,
kk ¼ 2�=kk and k? ¼ 2�=k?. We also define a field-line
folding factor f ¼ k?=kk, which parameterizes the magnetic
tension per energy and the unwinding time of field lines:
typically f is large. We normalize with B4

� �
instead of B2

� �2
because it has similar statistics as the squared magnetic force

terms. In the simulations, k?=kb � 0:58 with fluctuations of
3%, whereas the kurtosis ( B4

� �
= B2
� �2

) varies by 200%
(Schekochihin et al. 2002d). Therefore, either k? or kb may be
used to define the magnetic scale. In this paper we do not use
ko further except to point out that it typically lies in the range
k? > ko > kk.
At the end of stage 1, k? � kP � OðkbÞ � Oð1=k�Þ but

kk � Oð1=k�ÞTk?. Let b be the unit vector in the direction
of B. The folded field has relatively straight sections with
b G Hb � Oð1=k�Þ and highly curved corners where b G Hb �
Oð1=k�Þ (Schekochihin et al. 2002c). The strength of the field
in the corners is reduced so that the tension force (B G HB) is
Oð B2

� �
=k�Þ or less in the corners and straight sections. The

distance between corners is probably O(k�), although we do
not know this for sure.
During nonlinear growth (stage 2) the shearing eddies

presumably act on the magnetic field in a manner similar to
the viscous eddies in the kinematic (stage 1) growth. As
we shall discover below, unfolding flows produced by the
magnetic tension can change parts of the spectrum. However,
at high Prandtl numbers most of the magnetic energy remains
in folds deep in the viscous region where unfolding is highly
damped. Thus, such flows can be ignored in obtaining
the basic behavior at high Prandtl number. We therefore discuss
first the evolution of the structure, assuming that at every stage
the field is stretched only by the shearing-scale eddies, and
then estimates of the unfolding flows are given.
In a recent paper (Schekochihin et al. 2002b) we have

constructed a self-similar model of the nonlinear growth. We
argue that during this phase kk � ks. During the nonlinear
growth the folds get thinner and flux is destroyed at the
resistive scale. Thus, we expect k? � k� ¼ ð�tsÞ1=2. Note that
the resistive scale increases with time. The resistive destruc-
tion of flux will affect the growth of the field in equation (3).
The effect of resistivity is to decrease the growth rate of B2 by
a factor of 3

8
in short correlation time models of stage 1. We

expect therefore that a similar numerical factor should appear
in equation (3) and that a finite part of the cascade energy goes
to resistive heating.
After the field strength has reached saturation, i.e., when

B2 � 1
2
�v2f and ks ¼ kf , the structure of the field continues to

evolve somewhat. Resistive weakening of the field will allow
further stretching by the large-scale eddies. The resistive
weakening and the large-scale stretching both occur at the
forcing timescale, i.e., tf � t� � ts. The length of the folds
increases until kk � kf . Smaller scale eddies remain too weak
to do any further stretching. One also expects folds with
kk � kf to be made during this phase. Thus, the folded

TABLE 2

Scales and Definitions

Parameter Definition Parameter Definition

vk ....................... Velocity at scale k Bk............................. Magnetic field at scale k
� ........................ Kinematic diffusivity � .............................. Resistive diffusivity

k� ....................... Viscous scale k� ............................. Resistive scale

kf........................ Forcing scale (=1) vf ............................. Outer scale rms velocity (=1)

ks ....................... Shear scale vs .............................. Shear-scale velocity

Re ¼ vf kf =� ...... Reynolds number Pr ¼ �=�................. Prandtl number

ka ¼ 3=N .......... Aliasing (resolution) scale N3 ............................ Grid size

tf � kf =vf .......... Forcing timescale ts � ks=vs................. Shear timescale

k? ...................... Transverse folding scale kk ............................. Longitudinal folding scale

f ¼ kk=k? ......... Field-line folding factor s ¼ k=2� ¼ 1=k ...... Wavenumber
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structure is continuously regenerated. Eventually the field
structure reaches steady state with the folds being destroyed
by resistivity at the small scales and refolded at the large
scales. The saturated state has a single straining scale and
timescale: the forcing scale. We have not been able to deduce
the shape of the magnetic spectrum from heuristic arguments.
From simulations we find that the magnetic energy is domi-
nated by the subviscous scales.

The above discussion is based on the assumption of a single
stretching scale and that the eddies at that scale amplify the
field in a manner similar to the viscous eddies in the kinematic
growth: stage 1. We are therefore explicitly ignoring any
flows correlated with magnetic field structure. However, the
magnetic tension forces in stage 2 drive such flows, and they
can change the structure of the field. Specifically, during
growth, tension forces unfold and straighten the field over a
range of perpendicular scales. This follows from balancing the
tension forces with viscous or inertial forces. Consider a
particular fold (not necessarily a typical fold) of length Lk and
perpendicular scale L? (see Fig. 1). The magnetic tension is of
order B2/Lk in the fold. Balancing tension with inertial forces
yields an unfolding velocity,

vi � VA � vs; ð8Þ

where VA ¼ ðB2=4��Þ1=2 is the Alfvén velocity and VA � vs
follows from the nature of the back-reaction. Thus, the
inviscid unfolding rate, vi=Lk, of folds with Lk < ks is faster
than the shearing rate vs=ks. Balancing tension and viscosity
yield a viscous unfolding velocity,

vu �
V 2
A

�

L2?
Lk

� �
: ð9Þ

The unfolding is viscous when vu is less than vi, or equiva-
lently L? < k2=3

� k�1=6
s L

1=2
k . The viscous unfolding rate vu=Lk is

faster than the shearing rate for folds with L? > k2=3� k�2=3
s Lk.

During the stage 2 growth phase, we have Lk � kk � ks
(Schekochihin et al. 2002b). Thus, from equation (9) we
find that folds with k2=3� k1=3s > L? > k� remain folded during
growth. Folds with ks > L? > k2=3� k1=3s unfold inviscidly
(Alfvénically) at roughly the folding rate; thus, we expect
some folding in this range.

At saturation of the field strength B2=ð8�Þ ¼ 1
2
�v2 the folds

have elongated until Lk ¼ kk ¼ kf . In this final saturated state
the folded range is Re1=4 Pr�1=2 < L?=k� < Re1=4. At scales
above the folded range the unfolding and stretching timescales

are equal. Fields on these scales are in a dynamic state of
folding and unfolding. At Prandtl number of order 1 the folded
range disappears and the unfolding rate is comparable to the
shearing rate at all scales. In simulations with Pr � 1 we
observe that k? < kk < kf and the field and spectrum visually
appear to resemble the Pr 31 case; we do not understand
this. Although the computational evidence indicates that the
stirring-scale velocities produce all the folding in saturation,
velocity fluctuations persist below the forcing scale down to
the viscous scale, k� (see x 5.2). These fluctuations do not
appear to affect any net folding.

The discussion of folding above is, unfortunately, not very
precise. The basic scenario is seen in the simulations, but the
detailed scalings are not obtainable with the available
resolution. For example, we observe that at high magnetic
Prandtl number the saturated field is predominantly in the form
of viscously dominated folds with length kf and perpendicular
scale k�. We also observe a single straining scale in saturation,
namely, the forcing scale.

3. EQUATIONS AND DEFINITIONS

We normalize the magnetic field so that B=ð4��Þ1=2 ! B;
i.e., B has units of velocity. The equations we simulate are
then

@tv ¼� v Grrrrv�rrrr Pþ B2

2

� �
�rrrr G/þ B GrrrrBþ �r2vþ F;

ð10Þ

@tB ¼ H ��� ðv��� BÞ þ �r2B; ð11Þ

H G v ¼ 0; H GB ¼ 0: ð12Þ

These equations of incompressible MHD are solved using a
pseudospectral code in a unit cubic box with periodic
boundaries. We withhold details about the computer code
not necessary for understanding the results (see Maron &
Goldreich 2001; Maron 2000). A 2563 grid with spatial
dimension 13 has Fourier wavenumbers s ¼ k=ð2�Þ extending
from �85 to +85, where we have employed the 2

3
rule to avoid

aliasing errors. We find (see Appendix B) that without suffi-
cient resistivity (�) the important magnetic field structure is
destroyed by the dealiasing truncation. The simulations are
forced by adding random velocity increments at the large
scales (s ¼ 1 2) every time step, effectively white-noise
forcing that maintains a constant time-averaged energy input.
The magnetic field has no mean component, and the forcing
has no preferred kinetic helicity.

The object of this work is to study the dynamics when the
magnetic field is strong enough to react back on the turbu-
lence. It is clear from the introduction that to be in the relevant
regime we require k�Tk�Tkf . We arrange the forcing scale
to be at the largest computational scale (kf � 1). To get large
Prandtl numbers, we set the resistive scale to be at the smallest
computational scale (k� � 3kf =N ), where N is the number of
grid elements on each cube edge. During the kinematic growth,
this requires � � 9k3=2f v

3=2
f ��1=2N�2. For our studies it is

desirable to have k� small enough so that a true kinematic
inertial range exists; this requires k� � kf =8. In the heuristic
model of x 2 we show that once the magnetic field is strong
enough to react back on the velocity, the resistive scale
increases. Thus, we expect that if the resistive scale is resolved
in the linear regime, it will remain resolved in the nonlinear
regime.

Fig. 1.—Schematic of longitudinal (Lk) and transverse (L?) folding scales
of the magnetic field. Magnetic fields tend to be straight where they are strong
and curved where they are weak, thus reducing their rms tension. One also
sees how magnetic field lines are strained and folded. An initially straight
magnetic field is folded twice here to produce the configuration shown.
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The available spectral resolution with our computational
resources is a 2563 spectral grid or coarser. Thus, we can
achieve a range of scales of order 50. Unfortunately, we find
that to obtain the well-known kinematic spectrum of stage 1
(Kulsrud & Anderson 1992; Schekochihin et al. 2002a) a
Prandtl number of at least 2500 is required. Such a Prandtl
number is only possible when the largest scale is the viscous
scale (kf � k�). We have, nonetheless, studied the role of vis-
cosity and the inertial range in a sequence of simulations with k�
ranging between kf and k�. Clearly, larger simulations,
N > 256, would be desirable to obtain large Re and Pr
simultaneously.

We define the one-dimensional kinetic and magnetic energy
spectra as Ev ¼

R
EvðsÞ ds and Eb ¼

R
EbðsÞ ds. The heuristic

definitions of scales and times in x 2 are replaced with more
precise definitions that are calculated in the simulations. Thus,
we define timescales for resistivity (t�), vorticity (tw), and
shear (ts) by

t� ¼
1

k2?�
; tw ¼ 2� rrrr��� vð Þ2

D E�1=2
;

ts ¼
B2

� �
	

; ð13Þ

where 	 is the energy input rate (with our forcing 	 ¼ 1); ts is
indirectly linked to the shear time through ts � B2=	 �
v2s=	 � ks=vs, where ks and vs correspond to the scale and
velocity of the dominant shear. We also define the viscous
scale k� to correspond to the peak of the function k3EvðkÞ.

The parameters for each simulation are given in Table 4 in
Appendix A.

4. MAGNETIC FIELD GROWTH

In this section we present simulations of the growth of field
from weak initial values. Growth occurs in two stages: linear
and nonlinear. We found that for all simulations with Pr 31

the field grew to rough equipartition B2 � v2f and remained at
this level in a saturated equilibrium state. We discuss the
saturated state in x 5. In x 4.2 we include (for completeness) a
discussion of the Pr < 1 simulations of growth.

4.1. Growth of a Weak Magnetic Field, Pr > 1

The magnetic field is initially weak during the linear stage,
and the kinetic spectrum has the Kolmogorov form. Magnetic
fields grow exponentially at the rate of the turbulent shear.
Since the viscous-scale eddies shear the fastest, magnetic
growth proceeds at the viscous timescale t�. Kulsrud &
Anderson (1992; see alsoKazantsev1968;Gruzinov,Cowley,&
Sudan 1996; Schekochihin et al. 2002a) found that at high Pr
a dynamically weak magnetic field grows exponentially with
a k3/2 subviscous-scale spectrum terminating at the resistive
scale.
We ran simulations starting from a weak magnetic field for

a sequence of five viscosities, all with Pr � 1. For each value
of the viscosity, the resistivity is assigned the smallest value
such that most of the magnetic energy is destroyed by resis-
tivity before reaching the dealiasing scale. The ID numbers of
these five simulations are A1–A5 (see Table 4 in Appendix A),
and their energy and spectral evolutions are shown in
Figures 2–5. Magnetic energies grow exponentially in all
cases until the nonlinear stage is reached. The growth times tg
are given in Table 3, expressed in the form EbðtÞ � et=tg . The
k3/2 exponent is seen only when Pr � 2500, as with simula-
tion A1, where sufficient range exists between the viscous and
resistive scales (Fig. 4). The k3/2 spectrum is especially robust
in the simulation with zero resistivity (simulation A0; Fig. 5).
However, this simulation is not without concern for its
physical validity since the dealiasing destroys important
features of the magnetic structure not apparent in the spec-
trum. (This is addressed further in xx 5.3 and 5.1 and
Appendix B.) We see that very roughly tg / tw for simulations
A1–A4. Simulation A5 does not fit this rough scaling since

Fig. 2.—Exponential magnetic energy growth for a sequence of viscosities,
and EvðtÞ for simulation A4. Parameters for the simulations (A1–A5) are
given in Table 4.

Fig. 3.—Evolution of the magnetic spectrum for simulation A3, with
numbers indicating times. The spectrum at the latest time is in the saturated
state.
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it has Pr ¼ 1, and therefore the simple kinematic theory
described for stage 1 is not valid.

The magnetic kurtosis, b4
� �

= b2
� �2

, is observed to rise from
�3 to �15 during the linear regime and then to return to �3 in
the saturated state. These results are expanded on in
Schekochihin et al. (2002d).

Since we cannot achieve Pr 31 and Re31 simulta-
neously, we have little evidence for the nonlinear stage of
growth described in x 2. The best evidence comes from
examining the resistive scale of the magnetic field, which is
determined by a balance between shear growth and resistive
decay: ts � k 2

�=�. We note that k� ¼ k? (eq. [5]). From the
beginning to the end of the nonlinear stage, k? is predicted
(x 2) to increase by a factor of ðkf =k�Þ1=3 / ��1=4. The data in
Table 3 support this scaling, although the comparison is
inexact because the forcing velocity and hence the shear time
change slightly from the linear to the saturated state.

4.2. Pr < 1

Although the main thrust of this paper is to examine the
Pr 3 1 limit (because of its astrophysical relevance), we have
for completeness performed three Pr < 1 simulations. For
Pr < 1, subresistive velocities hinder magnetic growth. We
establish this with two simulations having the same k� and
different k� (Figs. 6 and 7). The first (S1) has k� ¼ k�, and the
second (S2) has Pr ¼ 0:4, which from Kolmogorov’s inertial
range scaling gives k� � 0:5k�. The only apparent difference
between the velocities in these simulations is that S2 has
subresistive scale velocity fluctuations. The resolution of S2
is, we believe, sufficient to capture the dynamics. The mag-
netic energy in simulation S1 grows more quickly than that for
simulation S2. We do not know if the subresistive velocities
provide a kind of turbulent resistivity (Parker 1979).

In Figures 8 and 9 the magnetic field decays for two sim-
ulations with Prandtl number 0.2 and 0.1 (simulations S3 and

S4, respectively). The magnetic Reynolds number for S4 is
250, which is large enough to sustain the magnetic field were
the Prandtl number to be greater than 1. Clearly, there is a
critical Prandtl number for kinematic growth. However, it is
not clear from our simulations how the critical Prandtl number
for growth depends on Reynolds number.

5. MAGNETIC SATURATION

All our Pr 31 simulations eventually reach a steady state:
magnetic saturation. This is the long-term state of MHD tur-
bulence in the absence of a mean magnetic field and with
zero mean kinetic helicity. This is the magnetic analog to
the Kolmogorov problem for hydrodynamic turbulence. In the
saturated state, the magnetic field is strong enough to affect the
turbulence at all scales; specifically, b2

� �
¼ Eb � v2f

D E
¼ Ev.

Note that in two dimensions (Zel’dovich 1957; Kinney et al.
2000) the magnetic field asymptotes to zero and there is no
magnetic steady state.

Four consequences of the heuristic model (x 2) are apparent
in the simulations. First, we see from Table 3 that Eb is smaller
but of order Ev: notice that they become essentially equal as
the Prandtl number increases. Second, the magnetic energy is
located at the small, resistive scale k� ¼ ðtf �Þ1=2 (see x 5.1).
Third, the field is stretched and folded by stirring-scale
motions and the magnetic spectrum is largely independent of
viscosity. Fourth, the magnetic field is folded into a reduced-
tension state (similar to the magnetic structure in the growth
phases) where field-line curvature anticorrelates with intensity.
We explore evidence for the third and fourth consequences in
xx 5.2 and 5.3, respectively.

5.1. Dissipative Power and Magnetic Scale

Energy injected into the motions at the stirring scale is
dissipated via two routes. In the first, energy is transferred
from the stirring-scale motions via stretching to the magnetic
field at all scales and dissipated by resistivity at the resistive
scale. In the second, kinetic energy is cascaded to small scales

Fig. 4.—Kinetic and magnetic energy spectra for simulation A1,
Pr ¼ 2500, with � ¼ 5� 10�2 and � ¼ 2� 10�5. The Prandtl number is just
large enough to see the linear-stage k3/2 magnetic spectrum. Detailed com-
parison with the kinematic theory was possible in the two-dimensional sim-
ulations of Kinney et al. (2000). The lack of a more detailed comparison in
three dimensions is simply a consequence of the limited resolution.

Fig. 5.—Kinetic and magnetic energy spectra for simulation A0, with � ¼
5� 10�2 and � ¼ 0. The Prandtl number is undefined; however, for this
resolution and viscosity, any value of Pr above 104 is functionally equivalent.
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where it is dissipated by viscosity. We find that the energy
dissipated by each mechanism is about equal in our solutions.
To compare the spectral distribution of energy and dissipation
for the saturated state, we plot the logarithm of each quantity.
For the kinetic and magnetic spectra, we plot ln ð10ÞkEðkÞ,
and for the viscous and resistive power, we plot 2� ln ð10Þk3
EvðkÞ and 2� ln ð10Þk3EbðkÞ, respectively.

In Figures 10 and 11 we compare two simulations: A4, a
1283 simulation with � ¼ 10�3 and � ¼ 10�4, and B4, a 2563

simulation with � ¼ 10�3 and � ¼ 4� 10�5. It is clear that the
magnetic energy is contained in a scale that decreases with �.
This is supported by the observation that the peak of the
magnetic spectrum (solid line) occurs where the resistive
dissipation becomes large. Viscous dissipation remains at a
medium scale as expected from hydrodynamics. Both of these
simulations are barely resolved as can be seen from the
structure at the resolution (aliasing) cutoff. The issue of ade-
quate resolution is discussed further in Appendix B.

5.2. Shear Timescale

In x 2 we have presented a scenario for nonlinear sup-
pression of growth by the magnetic field. In this scenario the
field suppresses the net shearing by those eddies with kinetic
energy density less than the magnetic field energy density.
Thus, in the saturated state only the forcing-scale eddies are
sufficiently energetic to continue to stretch and fold the field.
Nevertheless, in saturation (with � � 3� 10�3) the kinetic
spectrum decreases less rapidly than k�3 (Figs. 12 and 13),
suggesting that small-scale shear dominates. Also note that the
vorticity time, tw, does not change significantly between the
linear and saturated states (see Table 3) as might be expected if
the shearing of the small scales is suppressed. However, the
magnetic spectrum is largely unaffected by the presence of
these small-scale velocities (see Figs. 12 and 13). Indeed the
magnetic spectrum is remarkably insensitive to changes in
viscosity at fixed resistivity. We tentatively interpret these

TABLE 3

Energies and Timescales

Ev tw t� s?

Simulation � � Linear Sat

Eb

Sat

tg
Linear Linear Sat Linear Sat Linear Sat

A1................ 5 � 10�2 2 � 10�5 0.2 0.16 0.17 1.41 1.5 1.55 4.38 8.8 17.0 12.0

A2................ 5 � 10�3 1 � 10�4 0.75 0.38 0.32 0.59 0.45 0.62 1.50 3.5 13.0 8.5

A3................ 3 � 10�3 1 � 10�4 0.8 0.40 0.32 0.46 0.35 0.47 1.26 3.5 14.2 8.5

A4................ 1 � 10�3 1 � 10�4 0.9 0.60 0.22 0.36 0.25 0.30 0.78 3.1 18.0 9.0

A5................ 4 � 10�4 4 � 10�4 1.5 0.60 0.16 0.65 0.12 0.23 0.30 1.8 14.6 6.0

B1................ 5 � 10�2 1 � 10�5 . . . 0.16 0.17 . . . . . . 2.0 . . . 12.9 . . . 14.0

B2................ 5 � 10�3 4 � 10�5 . . . 0.3 0.4 . . . . . . 0.69 . . . 4.4 . . . 12.0

B3................ 3 � 10�3 4 � 10�5 . . . 0.3 0.3 . . . . . . 0.57 . . . 4.4 . . . 12.0

B4................ 1 � 10�3 4 � 10�5 . . . 0.5 0.3 . . . . . . 0.31 . . . 3.5 . . . 13.4

B5................ 4 � 10�4 1 � 10�4 . . . 0.55 0.3 . . . . . . 0.20 . . . 3.4 . . . 8.6

B6................ 1 � 10�4 1 � 10�4 . . . 0.55 0.3 . . . . . . 0.11 . . . 3.1 . . . 9.0

Notes.—‘‘Linear’’ and ‘‘sat’’ denote the linear and saturated states, averaged over a suitable length of time. Ev and Eb are the kinetic and
magnetic energies, tg is the exponential magnetic growth time during the linear phase, tw is the vorticity time, t� is the resistive time, and
s? ¼ k?=ð2�Þ is the magnetic wavenumber. The 2563 simulations were run for 5 crossing times ðkf =vf Þ.

Fig. 6.—Simulation S1, with � ¼ 10�3, � ¼ 10�3, and Pr ¼ 1. The mag-
netic field grows robustly.

Fig. 7.—Simulation S2, with � ¼ 4� 10�4, � ¼ 10�3, and Pr ¼ 0:4.
Unlike in Fig. 6, the magnetic field grows slowly.
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observations as showing that the stirring-scale motions stretch
and fold the field and that the small-scale motions are oscil-
latory motions (perhaps Alfvén waves) that cyclically ex-
change energy between v and B (Appendix C). Further work is
needed to establish the validity of this interpretation.

Further evidence for the hypothesis that the stirring scale is
the single stretching and folding scale comes from examining
the resistive scale and time. As we explained in x 2, the
resistive scale, k�, and resistive time, t�, increase from
the linear phase to the saturated phase. The data of Table 3
support the prediction that k� increases by a factor propor-
tional to ��1/4. Furthermore, the resistive time is insensitive to

the viscosity (at fixed resistivity) and therefore the presence
of small-scale motions. The t� is not expected to be exactly
independent of viscosity in the saturated state because the
larger viscosities influence the forcing-scale velocities and
hence the stirring-scale shear rate. For example, for case A1,
the viscous damping rate �k2f is within a factor of 1.5–3 of the
approximate eddy turnover rate ð2EvÞ1=2kf at the forcing scales
2� � kf � 4�.

Fig. 8.—Simulation S3, with � ¼ 4� 10�4, � ¼ 2� 10�3, and Pr ¼ 0:2.
The magnetic field decays.

Fig. 9.—Simulation S4, with � ¼ 4� 10�4, � ¼ 4� 10�3, and Pr ¼ 0:1.
The magnetic field decays.

Fig. 10.—Energy and dissipation spectra for the velocity and magnetic
fields from simulation A4, which has � ¼ 10�3 and � ¼ 10�4.

Fig. 11.—Energy and dissipation spectra for the velocity and magnetic
fields from simulation B4, which has � ¼ 10�3 and � ¼ 4� 10�5. The
magnetic spectrum of simulation B4 peaks at a larger k than for simulation A4.
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5.3. Magnetic Structure

The magnetic field has a characteristic (folded) structure in
the saturated state. The folding in saturation is similar to that in
the linear growth phase (Schekochihin et al. 2002d). We
quantify this structure by measuring the longitudinal and
transverse magnetic scales, kk and k? (see eqs. [5] and [6]). In
Figure 14 we plot kk and k? of the saturated states for a range �
and �. The data in Figure 14 are consistent with k? � k� � �1=2,
which would be expected if the shear timescale is constant and
shear balances resistivity. The kk is approximately constant (in
the resolved range) and equal to the outer scale of unity.

Folded structure reduces the magnetic tension forces that
drive unwinding of the small-scale magnetic field. In a recent
paper (Schekochihin et al. 2002d) we demonstrated that in the
saturated state the curvature of the field lines is anticorrelated
with the field strength. The corners of the folds have large
curvature but small field strength. Therefore, less generation
of small-scale velocities by the unwinding of small-scale
magnetic fields occurs. The reduction is apparently large
enough that magnetic energy ‘‘cascades’’ from the forcing
scale to the resistive scale without substantial loss to un-
winding. This phenomenon is reflected in the near indepen-
dence of the magnetic spectrum on viscosity (Figs. 12 and 13),
and it is observed directly in the tension release simulations of
x 5.5. The kinetic spectra also have greatly reduced mag-
nitudes compared to the magnetic spectra at high k. The
magnetic spectrum will be unaffected by unwinding if the
forcing-scale shear, which creates the field, is faster than
the unwinding, which removes it. The scalings of x 2 suggest
that this is the case if kk � kf . This condition is shown to be
approximately satisfied in Figure 14.

During the linear phase, the intermittency of the magnetic
field grows (Schekochihin et al. 2002a). The field is less
intermittent in the saturated phase: in simulations the magnetic
kurtosis, b4

� �
= b2
� �2

, rises from �3 to �15 during the linear

regime and then to returns to �3 in the saturated state. The
reduction in intermittency probably arises because spatial
regions with weak field continue to amplify after regions with
strong field have saturated until the whole field reaches a state
of closely packed, comparably strong magnetic folds. This
issue will be addressed further in future publications.

5.4. Large Initial Magnetic Field

As we have discussed, at high Prandtl number the kinematic
theory (Kulsrud & Anderson 1992; Kazantsev 1968; Gruzinov,
Cowley, & Sudan 1996; Schekochihin et al. 2002a) predicts
that an initially weak field grows exponentially with a k3/2

spectrum, which simulation confirms. The k3/2 spectrum is
after a transient period (of order the viscous eddy turnover
time) independent of the initial spectral shape. The magnetic
energy is therefore dominated by small-scale structure at the
beginning of the nonlinear phase, and simulations show that
it remains so through subsequent evolution to the saturated
state. In this section we examine the evolution when the
magnetic field is initially strong and organized at low k.
The strong magnetic tension would, at least initially, inhibit
the formation of small-scale fields. Nevertheless, we find
that the magnetic structure evolves to the same small-scale
saturated state that resulted from the weak initial field sim-
ulation. In general, we have observed no magnetic hysteresis.
Simulation L3 has an initial magnetic energy of unity,

which is confined to modes with k=2� � 4. The viscosity
is 3� 10�3 and the resistivity is 10�4, both of which are
identical to simulation A3. The viscous scale is smaller than
the initial magnetic scale. Subsequent evolution restores the
magnetic spectrum to the saturated state of simulation A3, as
shown in Figure 15. Simulation L4 has the initial condition
b2 ¼ 2 sin ð2�x1Þ, a simple field having zero mean and an
energy density of unity. The initial velocity is zero, and the
forcing power is unity. The viscosity is 10�3 and the resistivity
is 10�4 (identical to simulation A4). The magnetic field

Fig. 12.—Saturated spectra for the 1283 simulations A1–A5 (Table 4),
representing a sequence of viscosities at (approximately) fixed resistivity.
Each spectrum represents an average over five forcing timescales. The mag-
netic spectrum is largely independent of viscosity.

Fig. 13.—Same arrangement as for Fig. 12, although here with the 2563

simulations B2–B6 (Table 4). As before, the magnetic spectrum at fixed re-
sistivity is largely independent of viscosity.
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evolves to the saturated state A4 after approximately 5 time
units (Fig. 16). This initial condition is somewhat special as
field lines can be interchanged and mixed (making the spacial
scale smaller) without bending the lines.

The behavior with a strong mean field, Bh i2> V 2
� �

, is quite
different from these two simulations. The mean component of
the field remains exactly constant in the simulations. The
spectrum of turbulence in such a field is known to be mono-
tonically decreasing with k; in fact, EvðkÞ � k�1:5 (Maron &
Goldreich 2001). We speculate that for Bh i2T V 2

� �
, the sat-

urated equilibrium state is (as our two examples indicate) in-
dependent of the initial conditions. The timescale for achieving
the saturated state may be long for very strong large-scale fields.

5.5. Magnetic Structure and Unwinding Flows

The reduced magnetic tension of the saturated state was
previously diagnosed by noting that kk=k? 31. A more direct
test can be constructed by observing how fast magnetic
tension generates kinetic energy. This is done by artificially
setting the velocity to zero and observing the release of tension
in the subsequent evolution. Specifically, we observe the new
kinetic energy generated from field-line unwinding and where
in Fourier space it appears. Folded field lines have less tension
per energy than structureless field lines and hence unwind
more slowly, generating less velocity. A random-phase field is
generated from a structured field by randomizing the Fourier
component orientations while preserving the power spectrum.
The random-phase magnetic field serves as a reference for
structureless field lines with a folding factor of about unity.

We draw from the nonlinearly saturated state of simulation
A4 at t ¼ 12 to initialize two test simulations. In simulation U4,
we erased the velocity and restartedwith the same viscosity. The
resistivity was reduced to 10�5 to remove the effect of resistive
magnetic energy loss. In simulation U4r we additionally ran-
domize the phases of the magnetic Fourier modes. By com-

paring the kinetic spectra generated in simulations U4 and U4r,
we illustrate the effect of folding present in U4. We find that the
structured magnetic field generates less velocity (particularly at
early times) than the random-phase field, verifying that it has
reduced tension per energy (Figs. 17 and 18). We also observe
that the folded small-scale magnetic field generates large-scale
velocity, while the random-phase field generates small-scale
velocity. Specifically, the original magnetic field at s � 15
generates velocities at s � 3, while the random-phase field
generates them at s � 15. We infer that for the dynamics of the

Fig. 14.—Longitudinal (upper rows of symbols) and transverse (lower rows
of symbols) folding scales defined in eqs. (5) and (6). These numbers come from
the saturated states of simulations for a range of values in � and �. Small symbols
represent 1283 simulations, and large symbols represent 2563 simulations.

Fig. 15.—This figure follows the evolution of an initially large magnetic
field at low k (simulation L3), until it reaches a state where the magnetic
energy is dominantly at high k. The dashed line is the time-averaged saturated
state of simulation A3, which has the same viscosity and resistivity.

Fig. 16.—This figure follows simulation L4, which is similar to L3 except
that the initial field is at even lower k. The dashed line is the time-averaged
saturated state of simulation A4, which has the same viscosity and resistivity.
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saturated state, only large-scale shear is responsible for the
magnetic cascade, even though the kinetic spectrum is more
shallow than k�3. The cascade consists of a spectrally nonlocal
interaction between large-scale velocities and small-scale mag-
netic fields. Therefore, the cascade proceeds according to one
timescale, the forcing timescale. This also supports our claim
that magnetic forces oppose shear that is less energetic than the
magnetic field. Finally, the absence of production of kinetic
energy beyond s ¼ 6 (in the folded field-line case) establishes
that unwinding of the small-scale field is unimportant.

5.6. Forcing Scale

Simulation K4 is forced at 3 � s � 4, unlike the other
simulations, which are forced at 1 � s � 2. The initial con-
ditions are taken from the saturated state of simulation A4. The
viscosity and resistivity are the same as for simulation A4. The
purpose is to determine if magnetic energy can occupy modes
larger than the forcing scale. The result from Figure 19 is that
they do not. Indeed the magnetic field for 1 � s � 2 decays.

6. CONCLUSIONS

We began this paper by discussing a possible scenario for
magnetic field growth in galaxies and to a lesser extent
protogalaxies. The three stages of growth in the Galactic
scenario are described in the introduction. However, the focus
of this paper is on an idealized problem, the growth of field in
homogeneous isotropic high magnetic Prandtl number turbu-
lence. We argued that this problem is important to the early
stages of growth in our Galactic scenario and to any proto-
galactic scenario. A series of computer simulations of this
problem were performed. These simulations have yielded a
qualitative picture (see x 2) of the growth and saturation of
magnetic field. It is not clear how these results change our
understanding of the origin of Galactic or protogalactic fields.
What is clear is that the saturated state is dominated by small-
scale fields that do not resemble either Galactic fields (Beck

et al. 1996), where the fluctuating and mean (large-scale)
fields are comparable, or cluster fields (Carilli & Taylor 2002),
where the coherence length of the observed field is many
kiloparsecs and therefore much larger than the resistive scale.
Let us review briefly the qualitative picture of growth and

saturation. A weak seed field grows rapidly as a result of the
stretching of viscous-scale eddies (see x 4). The spectrum of
this weak field resembles the kinematic spectrum of Kulsrud
and Anderson; specifically, it peaks at resistive scales and
above these scales increases as k3/2. The field is in a folded

Fig. 18.—Simulation U4r started with the same saturated magnetic spec-
trum as simulation U4 in Fig. 17, but with randomized orientations of the
magnetic Fourier modes. Subsequent evolution generates small-scale veloci-
ties, as opposed to the large-scale velocities from simulation U4. These sim-
ulations are discussed in x 5.5.

Fig. 17.—Simulation U4 started with a saturated magnetic spectrum in the
folded state with the velocity set to zero. The t ¼ 0 line corresponds to the
velocity spectrum just before the velocity is set to zero. Subsequent evolution
(numbers indicate times) without forcing generates large-scale velocities.

Fig. 19.—Simulation K4, forced at 3 � s � 4 and initialized with the sat-
urated state of A4. Magnetic energy in modes with 1 � s � 2 decays.
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‘‘reduced-tension’’ state where B G HB � B2=l�THB2 �
B2=l�. The growth slows when the magnetic energy exceeds
the kinetic energy in viscous-scale eddies. The field, at any
instant, grows at the eddy turnover rate of the shearing scale.
The shearing scale is defined to be the scale at which the total
magnetic energy equals the kinetic energy in the shearing-
scale eddies. Growth continues until the magnetic energy
equals the kinetic energy in the stirring (largest) scale eddies.
In the saturated state (x 5) the magnetic energy remains equal
to the total kinetic energy. The saturated spectrum peaks at the
resistive scale associated with the stirring timescales, which,
although it is larger than the resistive scale associated with the
viscous timescale, is still small. The stirring-scale motions
continue to stretch the field: this stretching is balanced by
resistive destruction of field at the resistive scale. The saturated
field is also in a folded reduced-tension state with B G HB �
B2=lf THB2 � B2=l�. There is little evidence in our simu-
lations for a long time evolution of the magnetic spectrum
(such as we postulated in Schekochihin et al. 2002a), where
resistivity removes the smaller scales, allowing the larger
scales to grow and become progressively more dominant.

We have performed additional simulations to test various
aspects of the qualitative scenario. Two simulations were ini-
tialized with strong (equipartition) large-scale fields (see x 5.4).
These simulations evolved to the same small-scale field domi-
nated state obtained from weak initial fields. To demonstrate
how the folded reduced-tension state of the field drives very
little unwinding flows, we compared unwinding flows in the

true folded field and in a field with the same spectrum but
randomized phases (see x 5.5). The folded field drove large-
scale but no small-scale flows and the random-phase field drove
strong small-scale flows.

It is clear that a proper understanding of the growth and
saturation of magnetic field in galaxies requires treating the
full geometric complexities of the disk and halo. This has been
recognized from the earliest discussions of Galactic dyna-
mos (Parker 1979). We are starting to perform simulations of
Galactic disks. Such simulations can at best probe the large-
scale field dynamics. The dynamics investigated in this paper,
specifically the generation of small-scale fields, will affect
the large-scale field generation. Realistic inclusion of this
interaction is not possible computationally, and further un-
derstanding of the idealized problem discussed here is still
needed.
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APPENDIX A

INDEX OF SIMULATIONS

Table 4 provides an index of simulations.

TABLE 4

Index of Simulations

ID Grid � � Pr Notes

A0......................... 1283 5 � 10�2 0 . . .

A1......................... 1283 5 � 10�2 2 � 10�5 2500

A2......................... 1283 5 � 10�3 1 � 10�4 50

A3......................... 1283 3 � 10�3 1 � 10�4 30

A4......................... 1283 1 � 10�3 1 � 10�4 10

A5......................... 1283 4 � 10�4 4 � 10�4 1

B1......................... 2563 5 � 10�2 1 � 10�5 5000

B2......................... 2563 5 � 10�3 4 � 10�5 125

B3......................... 2563 3 � 10�3 4 � 10�5 75

B4......................... 2563 1 � 10�3 4 � 10�5 25

B5......................... 2563 4 � 10�4 1 � 10�4 4

B6......................... 2563 1 � 10�4 1 � 10�4 1

L3 ......................... 1283 3 � 10�3 1 � 10�4 1 Initial B at k ¼ 4 with large energy

L4 ......................... 1283 1 � 10�4 1 � 10�4 1 Initial B at k ¼ 1 with large energy

U4......................... 1283 1 � 10�3* 1 � 10�5 100 Erase v from A4 and continue

U4r ....................... 1283 1 � 10�3* 1 � 10�5 100 Like U4, and with random-phased B

K4......................... 1283 1 � 10�3 1 � 10�4 100 Force at s ¼ 3 and 4

A4w...................... 1283 1 � 10�3 1 � 10�6 1000 Start from weak field

A5w...................... 1283 4 � 10�4 1 � 10�6 1000 Start from weak field

A4s ....................... 1283 1 � 10�3 1 � 10�6 1000 Start from saturated state of A4

A5s ....................... 1283 4 � 10�4 1 � 10�6 1000 Start from saturated state of A5

S1 ......................... 1283 1 � 10�3 1 � 10�3 1

S2 ......................... 1283 4 � 10�4 1 � 10�3 0.4

S3 ......................... 1283 4 � 10�4 2 � 10�3 0.2

S4 ......................... 1283 4 � 10�4 4 � 10�3 0.1

Notes.—The following properties are common to all simulations: the box size is (1, 1, 1), and the kinetic energy is forced
with a power of unity. Forcing occurs within a sphere of radius 2 in Fourier lattice space, except for simulation K4, which is
forced at a radius of 3 and 4.
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APPENDIX B

RESOLUTION

The important folded structure is absent in simulations where insufficient resistivity is used. This is because when the resistivity
is small enough the spectral procedure indirectly contributes to magnetic energy loss. Although the nonlinear terms in a properly
dealiased pseudospectral algorithm conserve total energy summed over all resolved Fourier modes, there can still be other kinds of
errors. In particular, the loss of interactions with unresolved modes can alter the phase relationships between modes, thereby
destroying folded field-line structure and increasing the magnetic tension per unit energy. We find that 1283 simulations require
� > 10�4 and 2563 simulations require � > 3� 10�5. In this appendix we examine the consequences of insufficient resistivity.

When � is lowered below the resolution limit, k? becomes as expected independent of � and kk decreases markedly. The folded
structure is at least partially destroyed. This can also be seen in the spectrum of B G HB, the tension spectrum. In Figure 20 we plot
the tension spectrum for two resistivities, A4 with � ¼ 10�4 and A4w with � ¼ 10�6. A4w has insufficient resistivity and the
small-scale tension is enhanced over the A4, which has sufficient resistivity (but barely so). It is interesting that the tension
spectrum of A4 is roughly flat. The tension spectrum after the phases (of A4) are randomized is also plotted in Figure 20;
this spectrum peaks at the smallest scales. The tension spectrum of the underresolved case, A4w, is closer to the random-phase
spectrum than the resolved case.

The extra magnetic tension forces in the underresolved case generate unwinding velocities that dissipate viscously and remove
magnetic energy by unwinding. Thus, in simulations with insufficient resistivity, viscous dissipation near the dealiasing cutoff
becomes significant. In a sense viscosity takes over the energy dissipation role of resistivity, diminishing the effect of lowering the
resistivity in simulation A4s.

Although not obvious in the spectra, this effect can be seen by plotting the viscous and resistive dissipation. In Figure 21 we plot
the energy and dissipation of simulations A4 (� ¼ 10�3, � ¼ 10�4) and A4t (� ¼ 10�3, � ¼ 3� 10�5). Lowering the resistivity by
a factor of 3.3 in simulation A4t does not significantly change the magnetic energy spectrum. However, viscous dissipation of
dealiasing scale unwinding velocities dominates the dissipation in A4t. In contrast, dissipation in A4 is roughly half viscous
dissipation at the viscous scale and half resistive dissipation at the resistive scale. Clearly, A4t is underresolved: even A4 has
slightly too little resistivity as can be seen from the structure at the resistive scale.

APPENDIX C

SPANDEX WAVES

MHD interactions exist that are nonlocal in k space. For instance, large-scale shear can transfer energy directly to small-scale
magnetic fields. Alfvén waves are an oscillatory phenomenon where small-scale perturbations interact with a uniform magnetic
field. A similar oscillatory phenomenon exists in a tangled magnetic field. Here a large-scale velocity perturbation generates a

Fig. 20.—We plot the spectrum of the tension term, B G HB, to show the
effect of lowering the resistivity enough so that aliasing destroys folding
structure and enhances tension. The simulations are A4 and A4w, which both
have � ¼ 10�3. A4 has a resistivity of 10�4, and A4w has a resistivity of 10�6.
The random-phase spectra are also shown for comparison.

Fig. 21.—Lines without circles denote simulation A4 with � ¼ 10�4, and
lines with circles denote simulation A4t with � ¼ 3� 10�5. In simulation A4t,
dealiasing destroys folded magnetic structure and increases magnetic tension,
resulting in small-scale unwinding velocities and viscous dissipation.
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back-reaction in a small-scale tangled field. Locally, magnetic forces act in all directions, but spatially averaged, they tend to act
collectively to oppose the original large-scale perturbation.

Define a Lagrangian displacement field 
 ¼ âeiðk G x�!tÞ, with k G â ¼ 0 and v ¼ dt
. Let B ¼ B0 þ âðB0 GkÞieiðk G x�!tÞ, where B0

is the static nonoscillatory part with an assumed scale of much less than k�1. Any other time evolution in v and B is neglected,
as well as viscosity and resistivity. B satisfies the induction equation B ¼

R
dtB dt ¼ B G H
. Returning to the Navier-Stokes

equation, dtvh i ¼ �!2eiðk G x�!tÞ ¼ B G HBh i ¼ B0 G HB0h i � h B0 Gkð Þ2ieiðk G x�!tÞ. An average is taken over scale k, which implies
B0 G HB0h i � 0 and hðB0 GkÞ2i � hðB0Þ2ik2=3. Here 
 has an oscillatory eigenmode with phase speed hðB0Þ2=3i1=2. This is
equivalent to the Alfvén speed if we only consider the averaged magnetic field component along k.
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