
THE ASTROPHYSICAL JOURNAL, 554 :1175È1196, 2001 June 20
( 2001. The American Astronomical Society. All rights reserved. Printed in U.S.A.

SIMULATIONS OF INCOMPRESSIBLE MAGNETOHYDRODYNAMIC TURBULENCE

JASON MARON1 AND PETER GOLDREICH2
California Institute of Technology, Pasadena, CA 91125
Received 2000 November 22 ; accepted 2001 February 9

ABSTRACT
We simulate incompressible MHD turbulence using a pseudospectral code. Our major conclusions

are : (1) MHD turbulence is most conveniently described in terms of counterpropagating shear Alfve� n
and slow waves. Shear waves control the cascade dynamics. Slow waves play a passive role andAlfve� n
adopt the spectrum set by the shear waves. Cascades composed entirely of shear waves doAlfve� n Alfve� n
not generate a signiÐcant measure of slow waves. (2) MHD turbulence is anisotropic, with energy cas-
cading more rapidly along than along where and refer to wavevector components perpen-k

M
k
A
, k

M
k
Adicular and parallel to the local magnetic Ðeld, respectively. Anisotropy increases with increasing suchk

Mthat excited modes are conÐned inside a cone bounded by where c\ 1. The opening angle ofk
A

P k
M
c ,

the cone, deÐnes the scale-dependent anisotropy. (3) The one-dimensional inertial range#(k
M
)P k

M
~(1~c),

energy spectrum is well Ðtted by a power law, with a [ 1. (4) MHD turbulence is generi-E(k
M
) P k

M
~a,

cally strong in the sense that the waves that comprise it su†er order unity distortions on timescales com-
parable to their periods. Nevertheless, turbulent Ñuctuations are small deep inside the inertial range.
Their energy density is less than that of the background Ðeld by a factor of #(a~1)@(1~c)> 1. (5) MHD
cascades are best understood geometrically. Wave packets su†er distortions as they move along magnetic
Ðeld lines perturbed by counterpropagating waves. Field lines perturbed by unidirectional waves map
planes perpendicular to the local Ðeld into each other. Shear waves are responsible for theAlfve� n
mappingÏs shear and slow waves for its dilatation. The amplitude of the former exceeds that of the latter
by which accounts for dominance of the shear waves in controlling the cascade1/#(k

M
), Alfve� n

dynamics. (6) Passive scalars mixed by MHD turbulence adopt the same power spectrum as the velocity
and magnetic Ðeld perturbations. (7) Decaying MHD turbulence is unstable to an increase of the imbal-
ance between the Ñuxes of waves propagating in opposite directions along the magnetic Ðeld. Forced
MHD turbulence displays order unity Ñuctuations with respect to the balanced state if excited at low k

Mby d(t)-correlated forcing. It appears to be statistically stable to the unlimited growth of imbalance. (8)
Gradients of the dynamic variables are focused into sheets aligned with the magnetic Ðeld whose thick-
ness is comparable to the dissipation scale. Sheets formed by oppositely directed waves are uncorrelated.
We suspect that these are vortex sheets, which the mean magnetic Ðeld prevents from rolling up. (9)
Items 1È6 lend support to the model of strong MHD turbulence put forth by Goldreich & Sridhar (GS).
Results from our simulations are also consistent with the GS prediction c\ 2/3, as are those obtained
previously by Cho & Vishniac. The sole notable discrepancy is that one-dimensional energy spectra
determined from our simulations exhibit a B 3/2, whereas the GS model predicts a \ 5/3. Further inves-
tigation is needed to resolve this issue.
Subject headings : MHD È turbulence

1. INTRODUCTION

Most of the baryonic matter in the universe has such high
electrical conductivity that magnetic Ðelds di†use very
slowly through it. Thus, Ñuid motions and motions of mag-
netic Ðeld lines are closely coupled. Large-scale motions are
generally turbulent, and incompressible MHD is the sim-
plest approximation under which these complex coupled
motions can be investigated.

The inertial range of MHD turbulence is an essential
ingredient in a variety of astronomical phenomena. Cosmic
rays are scattered by inertial-range magnetic Ðeld Ñuctua-
tions. This a†ects both their propagation and their acceler-
ation in shock fronts (Blandford & Eichler 1987 ; Berezinskii
1990 ; Chandran 2000). Reconnection of magnetic Ðeld lines
is an important ingredient of Ñare activity and dynamo
action. The rate at which it proceeds seems likely to depend
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on the small-scale structure of magnetic Ðeld lines (Parker
1979 ; Lazarian & Vishniac 1999). The scintillation of small
angular diameter radio sources due to scattering by electron
density Ñuctuations is almost certainly related to inertial-
range MHD turbulence (Higdon 1984 ; Rickett 1990).

The organization of this paper is as follows. Relevant
properties of MHD waves are described in ° 2. In ° 3 we
introduce selected analytical models for the inertial range of
MHD turbulence. The strategy we follow in designing our
simulations is set forth in ° 4. Results from these simulations
are presented in ° 5. In ° 6 we interpret our results and
compare them with results from prior investigations. Tech-
nical details of our simulation method are relegated to the
Appendix. Two subsections merit special mention.

A comparison between our simulations and those of
earlier workers is given in ° 6.5. Here we merely point out
that our simulations are most closely related to those pre-
sented by Cho & Vishniac (2000). These authors demon-
strate that under nearly isotropic forcing, MHD turbulence
develops a scale-dependent anisotropy that increases with
increasing wavenumber in the manner suggested by Gold-
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reich & Sridhar (1995, 1997). Henceforth we refer to Gold-
reich & Sridhar (1995) and Goldreich & Sridhar (1997)
separately as GSI and GSII, and together as GS. Our simu-
lations di†er from those of Cho & Vishniac (2000) in that
they are excited anisotropically, so that we can study the
deep inertial range of MHD turbulence.

Our most perplexing result, the shallow slope we Ðnd for
the one-dimensional energy spectrum, is discussed in ° 6.6.
Unfortunately, we cannot o†er a deÐnitive explanation.
This will require further investigation.

2. BACKGROUND MATERIAL

2.1. Basic Equations
The equations that govern magnetohydrodynamics

(MHD) are written, using notation deÐned in Table 1,

o(L
t
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+2¿ ,

(1)

L
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B \ $ Â (¿ Â B)] l

B
+2B , (2)

L
t
o ] $ Æ (o¿)\ 0 , (3)

$ Æ B \ 0 . (4)

The concentration of a passive scalar advected by the Ñuid
evolves according to

L
t
c] $ Æ (c¿)\ l

c
+2c . (5)

We simplify equations (1)È(5) for applications in this
paper.3 Incompressibility is assumed throughout, so we set
o \ 1 and deÐne the total pressure P\ p ] B2/8n. The
magnetic Ðeld is measured in velocity units by b 4 B/(4n)1@2.
Each di†usive term is replaced by an nth order hyper-
di†usivity with the same coefficient With these modiÐ-l

n
.

cations, equations (1)È(5) transform to

L
t
¿\ [¿ Æ $¿[ $P] b Æ $b ] l
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L
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n
+2nc . (10)

3 Further steps are taken in ° A.2 to cast these equations in a form
suitable for computation.

TABLE 1

NOTATION

Variable Meaning

¿ . . . . . . . . Ñluid velocity
o . . . . . . . . Ñluid density
c . . . . . . . . passive scalar concentration
l
B

. . . . . . . magnetic di†usivity
B . . . . . . . . magnetic Ðeld
p . . . . . . . . Ñluid pressure
l
v

. . . . . . . momentum di†usivity
l
c

. . . . . . . passive scalar di†usivity

To relate P to and b, we take the divergence of equation¿
(6), which yields

+2P\ $b :$b [ $¿ :$¿ . (11)

Thus,

P\
P d3x@

4n
($¿ :$¿[ $b :$b)

o x@ [ x o
. (12)

2.2. Regimes
We decompose the magnetic Ðeld into a uniform part

plus Ñuctuations,

b \ SbT ] *b . (13)

The speed is deÐned by is taken to beAlfve� n vA zü \ SbT ; vAconstant in space and time, as is consistent with Ñux conser-
vation. The energy densities of the mean magnetic Ðeld, the
velocity Ðeld, and the magnetic Ñuctuations are denoted by

and respectively. The parameterE
WbX

, E
v
, E*b ,

k \ E
v
] E*b
E
WbX

, (14)

which measures the relative importance of the Ñuctuations
compared to the uniform Ðeld, determines the character of
MHD turbulence.

MHD turbulence with small k can be described in terms
of interacting waves. Kinetic and potential energy are freely
interchanged, so and have comparable magnitudes.E

v
E*bWave-mode turbulence is the principal subject of this thesis.

Analytic scalings are presented in ° 3 to provide an intuitive
feel for its dynamics. Results from our simulations are
described in ° 5 and discussed in ° 6.

2.3. L inear Waves in Incompressible MHD
Linear perturbations about a uniform background mag-

netic Ðeld can be decomposed into shear and pseudoAlfve� n
waves. The pseudo wave is the incompressibleAlfve� n Alfve� n

limit of the slow magnetosonic wave.4 As is well known,
both waves conform to the dispersion relation

u2\ vA2 k
z
2 . (15)

Eigenvectors for these modes take the form

¿ü A(k , t) \ aü (k) exp ik Æ (x < vA tzü ),

büA(k , t) \ <aü (k) exp ik Æ (x < vA tzü ) , (16)

¿ü
S
(k, t) \ sü (k) exp ik Æ (x < vA tzü ),

bü
S
(k, t) \ <sü (k) exp ik Æ (x < vA tzü ) , (17)

where the unit polarization vectors are deÐned by

aü 4
kü Â zü

[1 [ (kü Æ zü )2]1@2 , sü 4
zü [ (kü Æ zü )kü

[1[ (kü Æ zü )2]1@2 . (18)

We note that and form a right-hand triad.kü , sü , aü
MHD turbulence is anisotropic, with power cascading

more rapidly to high than to high In the limitk
M

k
z
. k

M
? k

z
,

displacements associated with slow modes alignsü ] zü ;
along the unperturbed magnetic Ðeld.

4 In the limit of incompressibility, the fast magnetosonic wave has inÐn-
ite phase velocity and cannot be excited.
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2.4. Elsasser Variables
The Elsasser transformation

w
�
\ vA zü ] ¿ [ bw

�
\ [vA zü ] v ] b (19)

applied to equations (6) and (7) with brings out thel
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two wave characteristics,
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where from equation (12),
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Linear waves propagate at the speed either paral-Alfve� n vAlel or antiparallel to the direction of the back-(w
�
) (w

�
)

ground magnetic Ðeld.

2.5. Collisions between Wave Packets
A disturbance of the background Ðeld can be decom-

posed into upward and downward propagating(w
�
) (w

�
)

wave packets. In the special case of unidirectional propaga-
tion, either or and an arbitrary nonlinearw

�
\ 0 w

�
\ 0,

wave packet is an exact solution of the equations of incom-
pressible MHD (Parker 1979). To prove this, take the diver-
gence of the equation for the nonzero w. This yields
+2P\ 0, which, since it applies globally, implies $P\ 0,
and hence that the wave packet propagates without distor-
tion.5 An important corollary is that nonlinear distortions
occur only during collisions between oppositely directed
wave packets.

Collisions are constrained by the conservation laws of
energy,

E\ 1
2
P

d3x( o ¿ o2] o b o2) , (23)

and cross helicity,

I\ 1
2
P

d3x ¿ Æ b . (24)

These conservation laws follow directly from equations
(6)È(9) in the limit that As a consequence, energy isl

n
\ 0.

not exchanged between colliding wave packets. A short
proof follows.

Take the dot product of equations (20) and (21) with w
�and respectively. The advective and pressure-gradientw

�
,

terms reduce to total divergences. This establishes that
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provided that and either vanish at inÐnity or satisfyw
�

w
�periodic boundary conditions. From the deÐning equations

for the Elsasser variables, we obtain o w
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for and for Thus,w
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�
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E
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4
P
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�
o2 and E

�
\ 1

4
P

d3x o w
�
o2 (26)

5 This conclusion remains valid for our simulations, which are carried
out in a computational box and employ periodic boundary conditions.

are the energies of isolated upward- and downward-
propagating wave packets. This completes the proof that
wave packet collisions are elastic.

2.6. Wave Packets Move along Field L ines
To lowest nonlinear order in the wave amplitudes, distor-

tions su†ered in collisions between oppositely directed wave
packets arise because each packet moves along Ðeld lines
perturbed by the other. The proof follows directly from
equation (20), written to second order in the amplitudes of
the and Ðelds. With the aid of equation (22), it can bew

�
w
�shown that
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and

x(x0, t) 4 x0] n(x0, t) . (29)

The Lagrangian displacement, n, connects the Lagrangian
coordinate of a Ñuid particle, to its Eulerian coordinate,x0,x.

Several steps are needed to establish equation (27). In
terms of n,
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K
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K
t
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To Ðrst order in the amplitudes of and we canw
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w
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replace by x in the deÐnition of n and writex0
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It then follows from equations (19) and (31) that

w
�
(1)\D

�
n(1) . (32)

The Ðnal step is to verify that the linear operator passesD
�through the integral sign and changes n(1) to whilew
�
(1)

leaving the rest of the integrand unaltered.
Equation (27) has a simple interpretation. Consider an

upward-moving wave packet for which prior to itsw
�
(2)\ 0

interaction with downward-moving waves. Subsequent to
this interaction, suppose that n(1) at Ðxed isz

�
\ z[ vA t

changed by *n(1). Then, as a function of z
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The Ðrst term on the right-hand side of this equation is the
perturbation that would result from the unconstrained dis-
placement of by *n(1). The second term constrains thew

�
(1)

perturbation to preserve Since magnetic Ðeld$ Æ w
�
(2)\ 0.6

lines are frozen in the Ñuid, we conclude that, at least to
second order, wave packets follow magnetic Ðeld lines.

Two points are worth stressing in connection with
equation (33) :

1. Downward-propagating waves contribute the entire
*n(1), since it is measured at Ðxed This isz

�
\ z [ vA t.

6 This term arises from the gradient of the total pressure.
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consistent with the general rule that only oppositely
directed wave packets interact.

2. The turbulent energy cascade is associated with the
shear of the *n(1) Ðeld. Uniform displacements, which arise
as a consequence of the sweeping of small disturbances by
larger ones, do not contribute to the transfer of energy
across scales.

The proof in this section has been couched in Eulerian
coordinates. A technically simpler version in Lagrangian
coordinates is given by Sridhar & Goldreich (1994). It con-
sists of demonstrating that the third-order Lagrangian
density for incompressible MHD vanishes when written in
terms of the transverse components of the displacement
vector. Although simpler technically, the Lagrangian-based
result is more subtle conceptually. Its proper interpretation
is provided in GSII.

3. MHD CASCADES

A variety of models have been proposed for MHD turbu-
lence. They share the common feature that energy cascades
from lower to higher wavenumber.

3.1. T he Iroshnikov-Kraichnan Model
The standard model is that of Iroshnikov (1963) and

Kraichnan (1965). KraichnanÏs derivation of the IK
(Iroshnikov-Kraichnan) spectrum relies on the fact that
only oppositely directed waves interact in incompressible
MHD. It assumes explicitly that the turbulence is isotropic
and implicitly that the dominant interactions are those that
couple three waves.

The above assumptions imply that the cascade time
across scale j is

t
c
D
AvA
vj

B2 j
vA

. (34)

Setting equal to the dissipation rate per unit mass, v,vj2/tcthen yields

vj D (vvA j)1@4 , (35)

which corresponds to the one-dimensional power spec-
trum,7

E(k)D
(vvA)1@2

k3@2 . (36)

Nonlinearity is measured by where N D s~2 iss D (vj/vA),
the number of wave periods in t

c
;

s D
Avj
vA3
B1@4

. (37)

Since s decreases with decreasing j, only dissipation limits
the length of the IK inertial range.

The IK model is Ñawed because the assumption of isot-
ropy is inconsistent with the frequency and wavevector
closure relations that resonant triads must satisfy (Shebalin,
Matthaeus, & Montgomery 1983). These take the form

u1] u2 \ u3 , (38)

k1] k2\ k3 . (39)

7 Because the IK cascade is isotropic, it is sufficient to specify its one-
dimensional power spectrum.

However, since equation (38) and the z-u\ vA o k
z
o ,

component of equation (39) yield the set

o k1z o] o k2z o\ o k3z o , (40)

k1z ] k2z\ k3z . (41)

Because nonlinear interactions can only occur between
oppositely directed waves, the three-mode coupling coeffi-
cient vanishes unless waves 1 and 2 propagate in opposite
directions. In that case, equations (40) and (41) imply that
either or must vanish. Since one of the incomingk1z k2zwaves has zero frequency, three-wave interactions do not
cascade energy along k

z
.

3.2. Intermediate MHD Turbulence
GSII propose an anisotropic MHD cascade based on

scalings obtained from three-wave interactions. It rep-
resents a new form of turbulence, which they term interme-
diate, because it shares some of the properties of both weak
and strong turbulence. Although individual wave packets
su†er small distortions in single collisions, interactions of all
orders make comparable contributions to the perpendicular
cascade.8

To derive the scaling relations for the intermediate
cascade, we repeat the steps carried out in ° 3.1 for the IK
model, but with in place of j and held constant. Herej

M
j
Aand are correlation lengths in directions perpendicu-j

M
j
Alar and parallel to the local magnetic Ðeld, respectively.

Thus,

t
c
D
A vA j

M
vjM j
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B2 j
A

vA
. (42)

Setting we ÐndvD vjM2 /t
c
,

vjM D
AvvA j

M
2

j
A

B1@4
, (43)

and

E(k
M
) D

(vvA k
A
)1@2

k
M
2 . (44)

In addition to being anisotropic, the intermediate MHD
cascade di†ers from the IK cascade in another important
respect. The strength of nonlinear interactions, as measured
by

s D
AvjM j

A
vA j

M

B
D
A vj

A
3

vA3 j
M
2
B1@4

, (45)

increases along the cascade. Thus, even in the absence of
dissipation, the intermediate cascade has a Ðnite inertial
range. This suggests that a strong form of MHD turbulence
must be the relevant one for most applications in nature.

3.3. Strong MHD Turbulence
A cascade for strong MHD turbulence is described in

GSI. Its deÐning property is that MHD waves su†er order
unity distortions on timescales comparable to their periods.
This state is referred to as one of critical balance. Motiva-
tion for the hypothesis of critical balance is given in Gold-
reich & Sridhar (1995, 1997) and summarized below. Our
discussion of intermediate turbulence shows that s increases

8 This is a controversial claim.
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if it is less than unity. However, it cannot rise above unity,
since the frequency spread of the wave packets that emerge
following a strong collision must satisfy the frequency-time
uncertainty relationship. A. Gruzinov (2000 private
communication) provides a more physical explanation for
the upper bound on s. He points out that for s ? 1, two-
dimensional motions of scale in planes perpendicular toj

Mthe local magnetic Ðeld are uncoupled over separations
greater than along the Ðeld direction. Thus, during aj

A
/s

time interval of the order of these motionsj
M
/vjM D j

A
/vA s,

reduce s to order unity.
Critical balance, and the assumption of a constant energy

Ñux along the cascade, as expressed by

vD
vjM3
j
M

, (46)

imply

j
A

P j
M
2@3 . (47)

Although there is a parallel cascade of energy in strong
MHD turbulence, the degree of anisotropy increases along
the cascade.

Let us assume and isotropy on outer scale L .v
L
D vAThen the three-dimensional energy spectrum of strong

MHD turbulence takes the form

E(k
M
, k

A
)D

vA2
L1@3k

M
10@3 f

Ak
A

L1@3
k
M
2@3
B

, (48)

where f (u) is a positive symmetric function of u with the
properties that f (u)B 1 for and f (u) is negligiblyo u o[ 1
small for o u o? 1. The power spectrum is Ñat as a function
of for because the velocity and magnetick

A
k
A

[ k
M
2@3 L~1@3

perturbations on transverse scale arise from indepen-k
M
~1

dent wave packets whose lengths The one-j
A

D j
M
2@3 L1@3.

dimensional perpendicular power spectrum obtained from
equation (48) reads

E(k
M
)D

vA2
L2@3k

M
5@3 . (49)

Thus, the spectrum of strong MHD turbulence is an aniso-
tropic version of the Kolmogorov (1941) spectrum for
hydrodynamic turbulence.

Inertial-range velocity di†erences and magnetic pertur-
bations across the perpendicular scale satisfyj

M

vjM D bjM D
Aj

M
L
B1@3

vA . (50)

Thus, even though the turbulence is properly classiÐed as
strong, deep in the inertial range magnetic Ðeld lines are
nearly parallel across perpendicular separations andj

Mnearly straight along parallel separations di†erentialj
A

;
bending angles are of the order of (j

M
/L )1@3 D (j

A
/L )1@2.

3.3.1. Parallel Cascade

It is interesting to examine the frequency-changing inter-
actions that drive the parallel cascade. Referring back to the
intermediate cascade, we know that three-wave interactions
do not change frequencies. However, interactions involving
more than three waves can. For example, frequency changes
arise in four-wave interactions of the form

u1] u2] u3\ u4 , (51)

k1] k2] k3\ k4 , (52)

where and have the same sign andk1z k2z u3\ vA o k3z o\ 0
(Ng & Bhattacharjee 1996 ; GKII). The parallel cascade
they give rise to proceeds at a rate that is smaller than that
of the perpendicular cascade by a factor of the order of s.
Because strong MHD turbulence is characterized by s D 1,
it has a signiÐcant parallel cascade.

3.3.2. Field L ine Geometry

MHD turbulence is best understood geometrically. Field
lines perturbed by waves propagating in one direction
deÐne two-dimensional mappings between xy planes
separated by distance z. Shear waves dominate theAlfve� n
shear and slow waves the dilatation of these mappings. The
magnitude of the shear exceeds that of the dilatation by a
factor of the order of These map-j

A
/j

M
D (L /j

M
)1@3 ? 1.

pings describe the distortion that counterpropagating
waves would su†er if they moved at uniform speed along
the perturbed Ðeld lines. The dominance of the shear over
the dilatation explains why shear waves control theAlfve� n
perpendicular cascades of both types of wave.

The recognition that MHD waves tend to follow Ðeld
lines is essential to understanding their turbulent cascades.
Figure 1 provides a visual illustration of how this works.
The left panel displays a snapshot of Ðeld lines perturbed by
downward-propagating waves. In the right panel we follow
the evolution of a horizontal pattern as it propagates from
the bottom to the top following these lines. The distortion
of the initially circular bulls-eye is principally due to the
shear in the two-dimensional mapping deÐned by the per-
turbed Ðeld lines. The cascade time on the scale of the initial
pattern is that over which the shear grows to order unity.

This geometrical picture requires two qualiÐcations. The
Ðrst is that the propagation speed of MHD waves is not
exactly constant but varies with the strength of the local
magnetic Ðeld. Pressure perturbations associated with slow
waves are balanced by perturbations of magnetic pressure.
The resulting perturbations in propagation speed, of the
order of contribute to the nonlinear cascade. Over onevjM,wave period they lead to fractional distortions of the order
of Thus they are properly ignored. ThevjM/vA D j

M
/j

A
> 1.

second qualiÐcation is that MHD waves do not exactly
follow Ðeld lines. The extent to which this a†ects their
cascade remains to be quantiÐed.

The parallel cascade can also be viewed in geometrical
terms. Consider an upward-propagating wave packet of
length and width that is being distorted byj

A
j
Mdownward-moving wave packets of similar scale. Corre-

lations along the parallel direction are shortened because
the front and back of the wave packet undergo di†erent
two-dimensional mappings. This happens because the
upward-propagating packet distorts each downward-going
packet as it passes through it. This distortion is of order s.
For strong MHD turbulence s D 1, which accounts for its
signiÐcant parallel cascade.

Incidentally, the geometrical picture also aids the inter-
pretation of results from perturbation theory. For example,
the three-wave resonant interactions that dominate the per-
pendicular cascade and the four-wave resonant interactions
that cause the lowest order frequency changes each depend
on the amplitudes of modes with This is because thek

z
\ 0.

shear in the mapping between xy planes separated by *z is
proportional to the displacement amplitudes of modes with
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FIG. 1.ÈWave packet distortion through Ðeld-line wander. L eft : Sample of Ðeld lines perturbed by downward-propagating waves. Right : Distortion of an
originally circular bulls-eye pattern as it moves upward following these Ðeld lines.

Perturbation theory corresponds to the limit ofk
z
[ 1/*z.

vanishing cascade strength in which shears of order unity
are achieved in the limit of inÐnite separation along the
z-axis.

3.3.3. Relation to Two-Dimensional Hydrodynamic Turbulence

Magnetic Ðeld lines possess a tension that makes them
ill-disposed to bend, but they are easily shuffled. This
accounts for the two-dimensional character of MHD turbu-
lence. It also prompts an inquiry into the relation of MHD
turbulence to two-dimensional hydrodynamic turbulence.
Each Ñuid element conserves its vorticity in inviscid two-
dimensional hydrodynamics. This results in a direct cascade
of enstrophy (vorticity squared) toward high and ank

Minverse cascade of energy toward small (Lesieur 1990). Ask
Mwe now demonstrate, MHD turbulence does not share these

characteristics.
The vorticity equation in MHD, obtained by taking the

curl of equation (6) with readsl
n
\ 0,

L($ Â ¿)
Lt

\ $ Â [¿] ($ Â ¿)[ b ] ($ Â b)] . (53)

We concentrate on shear waves, since they dominateAlfve� n
the Ðeld-aligned vorticity for nearly perpendicular cascades.
Scaling the terms in equation (53) shows that

Lu
A

Lt
D

vjM
j
M

u
A

. (54)

Thus, changes on the cascade timescale ; it is not evenu
Aapproximately conserved. Consequently, there is no ens-

trophy constraint to prevent energy from cascading toward
larger k

M
.

4. SIMULATION STRATEGY

What follows is a comprehensive discussion of the tech-
niques used in our simulations. Technical aspects of the
spectral method are presented in the Appendix.

4.1. Spectral Wave Mode Decomposition
Separation of and into upward- and downward-¿8 (k) b8 (k)

propagating components is accomplished by forming
Fourier coefficients of the Elsasser variables andw8

�
(k) w8

�
(k)

according to

w8
�
(k) \ ¿8 (k) [ b8 (k) , w8

�
(k) \ ¿8 (k) ] b8 (k) . (55)

Projections of and along the polarization direc-w8
�
(k) w8

�
(k)

tions of the linear incompressible MHD eigenmodes given
by equation (18) yield amplitudes of upward- and
downward-propagating and slow waves. In obviousAlfve� n
notation,

A
�
(k) 4 aü Æ w8

�
(k) \ v8 A(k) [ b8A(k) ,

S
�
(k) 4 sü Æ w8

�
(k) \ v8

S
(k) [ b8

S
(k) , (56)

A
�
(k) 4 aü Æ w8

�
(k) \ v8 A(k) ] b8A(k) ,

S
�
(k) 4 sü Æ w8

�
(k) \ v8

S
(k) ] b8

S
(k) , (57)

where

v8 A(k) \ aü Æ v8 (k), b8A(k) \ aü Æ b8(k) ,

v8
S
(k) \ sü Æ v8 (k), b8

S
(k) \ sü Æ b8 (k) . (58)
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The eigenmode frame, is tied to the direction of(kü , sü , aü ),
the mean Ðeld, to which the local Ðeld direction, isbü0\ zü , bü ,
inclined by an angle Consequently, our methodh D v

LM
/vA.

for spectral decomposition erroneously mixes andAlfve� n
slow modes. However, for nearly transverse cascades the
mixing is only of the order of h2> 1.

Field-line tilt also causes and to di†er from andk
r

k
z

k
Mk

A
;

k
r
\ cos hk

M
] sin hk

A
, k

z
\ [sin hk

M
] cos hk

A
.

(59)

Thus, However,k
r
B k

M
[1] O(h2)]. k

z
B k

A
] hk

M
B hk

M
,

where the Ðnal relation applies because the degree of anisot-
ropy increases with increasing along MHD cascades.k

MThus, can be represented to acceptable accuracy byk
M

k
r
.

However, cannot be obtained from Henceforth, wek
A

k
z
.

treat as equivalent and and and However,k
r

k
M

L
x
\ L

y
L
M
.

we are always careful to distinguish from and to notek
z

k
Athat

k
z
B

v
LM
vA

k
M

. (60)

4.2. Power Spectra
Three-dimensional power spectra of Ðeld quantities,

are azimuthally symmetric functions ofE3D(k), k
r
\ k

x
xü

at Ðxed Accordingly, we deÐne the two-] k
y

yü k
z
.9

dimensional integrated power spectrum by

E2D(k
r
, k

z
)\ k

r

P
0

2n
d/E3D(k) . (61)

It is important to note that is not equivalent toE2D(k
r
, k

z
)

Moreover, the latter cannot be derived from theE2D(k
M
, k

A
).

former. This shortcoming is due to the failure of the spectral
decomposition procedure described in ° 4.1 to determine k

A
.

It means that the two-dimensional power spectrum is not a
useful quantity.10 However, we make so much use of the
one-dimensional integrated power spectrum, deÐned by

E1D(k
r
)\
P
~=

=
dk

z
E2D(k

r
, k

z
) , (62)

that henceforth we drop the subscript 1D.

4.3. Structure Functions
The three-dimensional behavior of MHD turbulence is

best captured in real space using second-order structure
functions tied to the local magnetic Ðeld. We deÐne trans-
verse and longitudinal structure functions for the vector
Ðeld U by

SFT
U
(x

M
)4 S[U(x@] x

M
)[ U(x@)]

Æ [U(x@] x
M
)[ U(x@)]T , (63)

where andx
M

Æ b \ 0,

SFL
U
(x

A
)4 S[U(x@] f (x

A
))[ U(x@)]

Æ [U(x@] f (x
A
))[ U(x@)]T , (64)

9 In any speciÐc realization, this is true only in a statistical sense.
10 We obtain two-dimensional information from structure functions.

with The integral is taken along the Ðeldf (x
A
) \ /0xA ds bü (s).

direction with s measuring arc length from x@. Averaging
over x@ is done with random volume sampling. Since the
vector Ðelds of interest possess statistical axial symmetry
about we include an axial averaging of the direction ofbü , x

Mat Ðxed in the computation ofx
M

4o x
M

o SFT
U
(x

M
).

4.4. T ime Step and Hyperviscosity
The anisotropy of MHD turbulence complicates the dis-

cussion of constraints on the time step and hyperviscosity.
Accordingly, we begin by discussing the simpler case of
spectral simulation of isotropic hydrodynamic turbulence.
These constraints are summarized in Figure 2.

4.4.1. Isotropic Hydrodynamic Turbulence

We assume the Kolmogorov scaling. Given velocity v
Lon outer scale L , inertial-range velocity di†erences across

scale as down to inner scalej [ L vj D (j/L )1@3v
Ll D (l

n
/v

L
L2n~1)3@(6n~2)L .

Four conditions constrain the values of the time step, *t,
and hyperviscosity, suitable for a spectral simulation ofl

n
,

isotropic hydrodynamic turbulence. Each refers to the
behavior of modes with the largest wavevectors, Wek

M
.

express these constraints in terms of the dimensionless vari-
ables and*t 4 v

L
k
M

*t l4 (l
n
k
M
2n)/(v

L
k
M
).

Conditions 1 and 2 are concerned with computational accu-
racy.

1. Advection by outer scale eddies gives rise to fractional
changes of the order of in the Fourier componentsv

L
k
M

*t
of the smallest scale modes during one time step.11 Accurate

11 Changes caused by interactions that are local in Fourier space are
smaller by a factor of (k

M
L )~1@3.

FIG. 2.ÈTime step and hyperviscosity. We illustrate constraints on the
dimensionless time step and hyperviscosity as described in ° 4.4. The con-
straint given by eq. (68) is not shown, because it depends upon an addi-
tional parameter. Allowed choices lie in the unshaded part of the Ðgure.
Each plotted point represents values used in an individual simulation.
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computation requires

*t [ 1 , (65)

which is the spectral equivalent of the Courant condition in
real space.

2. Hyperviscosity causes a fractional decay of the order
of in the amplitudes of the smallest scale modesl

n
k
M
2n *t

during a single time step. Thus,

*t [
1
l
n

. (66)

Conditions 3 and 4 are required to maintain stability.
3. This constraint depends on the algorithm used to

advance the variables in time. Integration with the second-
order Runge-Kutta algorithm (RK2) results in an
unphysical transfer of energy from large- to small-scale
modes. Consider one-dimensional uniform advection at
speed of the single Fourier mode RK2 yieldsv

L
v(k

M
, t).

Thus,v(k
M

, *t)\ [1[ iv
L
k
M

*t[ (v
L
k
M

*t)2/2]v(k
M

,0).
In order foro v(k

M
, *t) o2\ [1 ] (v

L
k
M

*t)4/4] o v(k
M

,0) o2.
hyperviscosity to maintain stability,

*t [ (4l
n
)1@3 . (67)

4. A turbulent cascade transfers energy from large to
small scales, where it is dissipated by viscosity. Spectral
simulations of turbulence must include a mechanism that is
able to dispose of the energy carried by the cascade before it
reaches Otherwise, it would reÑect back to smaller kk

M
.

and the high-k Fourier modes would approach energy equi-
partition with those of lower k.12 Hyperviscosity suffices
provided that the inner scale it sets is larger than the grid
resolution. This requires

lZ (k
M

L )~1@3 \ (nN/2)~1@3 . (68)

Dealiasing also involves a loss of energy and can stabilize
simulations run with a sufficiently small time step even in
the absence of hyperviscosity. Further investigation is
needed to clarify the manner in which energy is lost due to
dealiasing.

4.4.2. Anisotropic Magnetohydrodynamic Turbulence

We restrict our discussion of MHD turbulence to cases in
which the energy in the mean magnetic Ðeld greatly exceeds
that in the kinetic and magnetic Ñuctuations. As discussed
in ° 3, analytic arguments indicate that the Kolmogorov
scaling is obeyed in planes perpendicular to the mean mag-
netic Ðeld. Thus, constraints on the time step and hyper-
viscosity deduced in ° 4.4.1 for hydrodynamic turbulence
pertain to MHD turbulence in the xy plane provided that
we take and*t 4 v

LM
k
MM

*t l4 (l
n
k
MM
2n )/(v

LM
k
MM

).
Di†erent constraints arise from motion along the direc-

tion of the mean magnetic Ðeld. Strong MHD turbulence is
anisotropic, with energy cascading more rapidly along k

Mthan along Analytic arguments imply that the anisot-k
A
.

ropy at the perpendicular scale is determined byk
M
~1

the condition that the nonlinearity parameter s \
where is the wavevector component in(vj k

M
)/(vA k

A
)D 1, k

A

12 The energy per Fourier mode scales as k~11@3 in Kolmogorov turbu-
lence.

the direction of the local magnetic Ðeld. It is important to
maintain the distinction between and As discussed ink

A
k
z
.

° 4.1, k
z
B (v

LM
/vA)k

M
D (k

M
L
M
)1@3k

A
.

We control the value of in our simula-(v
LM

L
z
)/(vA L

M
)

tions. Typically, this quantity is set somewhat larger than
unity in order to ensure that the largest scale structures
cascade on a timescale shorter than the crossingAlfve� n
time, As a consequence,L

z
/vA.

vA k
Mz

B
vA L

M
v
LM

L
z
v
LM

k
MM

[ v
LM

k
MM

. (69)

After this preparation, we are ready to examine the con-
straints placed on *t and by evolution in the z-direction.l

n
1. Advection in the z-direction is dominated by propaga-

tion at the speed, since in our simulations.Alfve� n v
Lz

> vAThus, computational accuracy demands vA k
Mz

*t [ 1.
Since this constraint is less severe thanvA k

Mz
[ v

LM
k
MM

,
that imposed by equation (65).

2. Hyperdi†usivity is not important in the z-direction
because and we use a scalar hyperdi†usivity.k

Mz
> k

MM
,

3. Integration with RK2 leads to an unphysical transfer
of energy from large to small scales due to advection at the

speed. Provided that equation (67) is satisÐed, thisAlfve� n
does not cause any difficulty, because vA k

Mz
[ v

LM
k
MM

.
4. The maximum wavenumber in the z-direction, k

Mz
,

must be larger than that at the inner scale of the cascade.
From equation (60),

k
Mz

L
z
D
Av

LM
L
z

vA L
M

B
k
MM

L
M

. (70)

As mentioned above, the factor preceding is typi-k
MM

L
Mcally larger than unity. Thus, adequate resolution along z

generally requires N
z
[ N

M
.

4.5. Simulation Design
We carry out simulations of both forced and decaying

MHD turbulence. Amplitudes of Fourier modes within 3
lattice units of the origin, normalized wavevector o s o¹ 3,
are incremented at each time step in simulations of forced
turbulence and assigned initial values in simulations of
decaying turbulence. Each component of these amplitudes
receives an addition of a complex number with random
phase and absolute value drawn from a Boltzmann dis-
tribution with speciÐed mean, subject to the constraint that

and k Æ b(k) \ 0. Thus, we are forcing bothk Æ ¿(k) \ 0
velocity and magnetic Ñuctuations. Forcing alone would¿
artiÐcially correlate the power received by and Withw

�
w
�
.

our technique, Ñuctuations in the energy input to waves
moving in opposite directions are independent.

The aspect ratio of our simulation box is chosen to match
the anisotropy of the turbulence. In most of our simula-
tions, We scale lengths to and veloci-L

z
? L

x
\ L

y
. L

z
\ 1

ties to Thus, waves take *t \ 1 to propagate thevA \ 1.
length of the box. The excitation level, set by the parameter

is chosen so that the longest waves cascade(v
LM

L
z
)/(vA L

M
),

in less than *t \ 1. An equivalent statement is that a typical
Ðeld line wanders by more than in the transverse direc-L

Mtion during its passage across the length of the box. ThisL
zrequires the excitation parameter to be somewhat larger

than unity. Typical values in our simulations are of the
order of 5. We generally run our simulations for a few cross-
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ing times. Thus, nonlinear interactions are fully expressed
on all scales.

Our basic procedure comes with a variety of reÐnements.
The Ðelds can be decomposed into their and com-w

�
w
�ponents, as given by equations (55). Each of these can be

further separated into shear and slow modes accord-Alfve� n
ing to equations (56) and (57). In this manner we can selec-
tively input and remove waves of any type and with any
direction of propagation.

5. SIMULATION RESULTS

Parameters of the simulations referred to in this section
are listed in Table 2. Each simulation is carried out in a box
of dimensions and includes anL

x
\ L

y
\ 2 ] 10~3 L

z
\ 1,

external magnetic Ðeld of unit strength aligned with the
z-axis, and uses a fourth-order hyperviscosity. The dimen-
sionless forcing power is denoted by P. It is chosen so that
the rms dimensionless Ñuctuations of v and b have magni-
tude 3 ] 10~3. These values also characterize the initial
states of simulations of decaying turbulence.

5.1. Power Spectra
We obtain power spectra from our simulations as

described in ° 4.2.

5.1.1. One-Dimensional Power Spectra

Examples of one-dimensional power spectra obtained by
averaging results from three simulations (F2, F3, and F4) of
resolution 128 ] 128 ] 512 are presented in Figure 3. Each
spectrum has an inertial-range slope of approximately 1.5.
The power spectra displayed in Figure 4 come from a single
simulation (F5) with resolution 256] 256 ] 512. Aside
from their extended inertial ranges, they look similar to
those plotted in Figure 3.

5.1.2. Two-Dimensional Power Spectra

Figure 5 displays a sequence of one-dimensional power
spectra made by taking cuts parallel to the axis across thes

ztwo-dimensional power spectrum of shear wavesAlfve� n
from simulation F5. Note that there is negligible power at
the highest even for the highest Thus, this simulations

z
s
M
.

has adequate resolution along the z-direction, something we
verify for each of our simulations. As we emphasize in °° 4.1
and 4.2, these cuts do not suffice to determine the structure

TABLE 2

SIMULATION PARAMETERS

ID (N
M
, N

z
) *t l4 Comments

F1 . . . . . . 64, 256 4 ] 10~4 5 ] 10~37 P\ 2 ] 10~5
F2 . . . . . . 128, 512 3 ] 10~4 5 ] 10~40 P\ 2 ] 10~5
F3 . . . . . . 128, 512 3 ] 10~4 5 ] 10~43 P\ 2 ] 10~5
F4 . . . . . . 128, 512 3 ] 10~4 5 ] 10~43 P\ 2 ] 10~5
F5 . . . . . . 256, 512 1.5] 10~4 5 ] 10~43 P\ 2 ] 10~5
D1 . . . . . . 64, 256 4 ] 10~4 5 ] 10~40 P\ 0
D2 . . . . . . 64, 256 4 ] 10~4 5 ] 10~37 P\ 0, A

�
] S

�
D3 . . . . . . 64, 256 4 ] 10~4 5 ] 10~37 P\ 0, A

�
] A

�
D4 . . . . . . 128, 512 3 ] 10~4 5 ] 10~40 2 \ s

M
\ 4

D5 . . . . . . 128, 512 3 ] 10~4 5 ] 10~40 4 \ s
M

\ 8
D6 . . . . . . 128, 512 3 ] 10~4 5 ] 10~40 8 \ s

M
\ 16

D7 . . . . . . 128, 512 3 ] 10~4 5 ] 10~40 16 \ s
M

\ 32
D8 . . . . . . 256, 512 1.5] 10~4 5 ] 10~43 16 \ s

M
\ 32

D9 . . . . . . 256, 512 1.5] 10~4 5 ] 10~43 32 \ s
M

\ 64

FIG. 3.ÈOne-dimensional averaged power spectra. Energy spectra are
obtained by averaging results from simulations F2, F3, and F4 with
resolution 128 ] 128 ] 512.

of turbulence parallel to the local magnetic Ðeld. For that
we need to use structure functions (see ° 5.2).

5.2. Structure Functions
Figure 6 displays transverse and longitudinal structure

functions for both shear and slow waves calculatedAlfve� n
as described in ° 4.3 from data obtained by averaging results
from simulations F2, F3, and F4. The plots are truncated at
j/L \ 0.5 because at greater separations the structure func-
tions are a†ected by the application of periodic boundary
conditions.

FIG. 4.ÈHighest resolution one-dimensional power spectra. Energy
spectra are obtained from simulation F5 with resolution 256 ] 256 ] 512.
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FIG. 5.ÈCuts across two-dimensional power spectrum; energyAlfve� n
spectrum as a function of at Ðxed from simulation F5.s

z
s
M

5.2.1. Anisotropy

Structure functions are the best measure of the scale-
dependent anisotropy of an MHD cascade. Ordered pairs
of and obtained by equating the longitudinal andj

A
j
Mtransverse structure functions for shear waves shownAlfve� n

in Figure 6 are plotted in Figure 7. We leave it to the reader
to judge the degree to which this supports the prediction by
GS that in the inertial range.j

A
P j

M
2@3

FIG. 6.ÈTransverse and longitudinal structure functions. Structure
functions transverse and longitudinal to the local magnetic Ðeld direction
are obtained by averaging results from simulations F2, F3, and F4 with
resolution 128 ] 128 ] 512.

FIG. 7.ÈOrdered pairs of and Anisotropy of MHD turbulence isj
M

j
A
.

quantiÐed by plotting values of and obtained by settingj
M

j
A

SFTA(j
M
) \

using the data displayed in Fig. 6.SFLA(j
A
)

5.2.2. Ratio of Nonlinear to L inear T imescales

The quantity is the ratio of the nonlin-s \ (j
M

vA)/(j
A

vjM)ear to linear timescale associated with wave packets of
dimensions To evaluate s we take(j

M
, j

A
). vjM \ SFTA1@2(jM

)
from Figure 6 and from Figure 7. The plot in Figure 8j

M
/j

Aestablishes that s maintains a value near unity throughout
the inertial range.

FIG. 8.ÈCritical balance. Data from Figs. 6 and 7 are combined to
form s, the ratio of linear to nonlinear timescales. Note that s has a nearly
constant value close to unity throughout the inertial range. This conÐrms
that MHD turbulence maintains a state of critical balance.
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FIG. 9.ÈEnergy loss per time step by hyperviscous dissipation and
dealiasing. Energy is lost from modes by hyperviscous dissipationhigh-k

Mand dealiasing. The former dominates the latter when integrated over the
spectrum. Neither is signiÐcant in the inertial range. The results shown
here are from simulation F2.

5.3. Energy L oss
Total, mechanical plus magnetic, energy is conserved in

the inertial range of MHD turbulence. It is lost from high-
modes by a combination of hyperviscous dissipation andk

Mdealiasing.13 Neither represents reality, but we hope that
their e†ects do not compromise inertial-range dynamics.
Figure 9 includes plots from simulation F2 of the hyper-
viscous and dealiasing energy losses per computational time
step. For reference, the total power spectrum is also dis-
played. Hyperviscous dissipation dominates dealiasing
except at the highest where the residual power is negligi-k

M
,

ble. This situation is typical of all our simulations.

5.4. Imbalance
Because only oppositely directed waves interact, turbu-

lent cascades tend to become unbalanced. By unbalanced,
we mean that unequal Ñuxes of energy propagate in
opposite directions along the magnetic Ðeld.

5.4.1. Forced Turbulence

Mode energies from simulation F1 of forced turbulence
with resolution 64 ] 64 ] 256 are plotted as a function of
time in Figure 10.14 Characteristic Ñuctuations of order
unity occur on a timescale *t \ 1. Imbalance appears to
saturate on longer timescales.

5.4.2. Decaying Turbulence

Imbalance is more severe in decaying turbulence. Figure
11 displays energies of individual modes as a function
of time obtained from simulation D1 of resolution
64 ] 64 ] 256. The initial imbalance increases without
limit.

13 Energy is lost during dealiasing when we set the amplitudes of modes
with to zero.o sa o[ Na/314 This simulation is the source of initial conditions for many higher
resolution simulations.

FIG. 10.ÈForced turbulence : mode energies as a function of time for
forced turbulence from simulation F1 of resolution 64] 64 ] 256.

5.5. Passive Role of Slow Waves
5.5.1. Cascading of Slow Waves by Shear WavesAlfve� n

Simulation D2 of decaying turbulence with resolution
64 ] 64 ] 256 is designed to assess the mutual e†ects of
shear waves on slow waves and vice versa. We ini-Alfve� n
tialize it by removing the upward-propagating slow waves
and the downward-propagating shear waves fromAlfve� n
simulation F1 at t \ 6.6. It is then run for *t \ 1. Figure 12
illustrates the evolution of the energies in upward-

FIG. 11.ÈDecaying turbulence : energy as a function of time for shear
and slow modes in decaying turbulence. The simulation is D1 withAlfve� n

resolution 64 ] 64 ] 256.
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FIG. 12.ÈPassive role of slow waves. Upward-moving shear Alfve� n
waves interact with downward-moving slow waves. The power spectrum of
the former decays only at large whereas that of the latter decays at allk

M
,

Results are taken from simulation D2 of decaying turbulence withk
M
.

resolution 64 ] 64 ] 256.

propagating shear waves and downward-Alfve� n
propagating slow waves. The only change in the spectrum
of shear waves is a decay at large which is entirelyAlfve� n k

M
,

attributable to energy loss by hyperviscosity and dealiasing.
By contrast, the spectrum of slow waves decays at all at ak

Mrate consistent with that shown in Figure 11. These Ðndings
demonstrate that shear waves control the MHDAlfve� n
cascade and that the slow waves play a passive role.

5.5.2. Conversion of Shear Waves to Slow WavesAlfve� n

Simulation D3 of decaying turbulence with resolution
64 ] 64 ] 256 is tailored to measure the rate at which shear

waves are converted into slow waves. It is initializedAlfve� n
from F1 at t \ 6.6 by removing all slow waves and then run
for *t \ 1. As demonstrated by Figure 13, at the end of this
interval, which corresponds to about a decay time at the
outer scale (see Fig. 11), the slow waves carry negligible
energy. The small admixture shown may result from the
limited ability of our scheme of spectral decomposition to
distinguish slow waves from shear waves, as dis-Alfve� n
cussed in ° 4.1.

5.6. Cascade Diagnostics
We design special simulations to exploit the fact that only

oppositely directed waves interact. Each of these is initial-
ized by removing all but a narrow band in of upward-k

Mpropagating waves (up-waves) from a fully developed forced
simulation. These are then run without forcing so that we
can observe the evolution of the energy in the up-band as it
spreads into adjacent bands. Since the down-waves evolve
weakly, we restrict the lengths of these runs to *t \ 1/2 so
that interactions do not repeat.

Initial conditions for simulations D4, D5, D6, and D7 are
provided by band-Ðltering simulation F2 at t \ 2.8 with
up-modes retained from 2 ¹ s

M
¹ 4, 4 ¹ s

M
¹ 8, 8 ¹ s

M
¹

16, and respectively. Each of these simula-16 ¹ s
M

¹ 32,

FIG. 13.ÈNegligible conversion of shear to slow waves. SlowAlfve� n
wave production in a simulation of decaying turbulence initialized with
pure shear waves. After one decay time, the slow waves containAlfve� n

of the total energy. This amount is indistinguishable from the false[10~4
slow waves that our spectral decomposition procedure would report
because of the tilt of the local magnetic Ðeld relative to the global z-axis.
Data plotted comes from simulation D3 with resolution 64] 64 ] 256.
Simulation F1 provides the initial conditions for simulation D3.

tions has resolution 128 ] 128 ] 512. Resolution
256 ] 256 ] 512 simulations D8 and D9 are initialized
from simulation F5 by band-Ðltering at t \ 2.95 with up-
modes retained from and16 ¹ s

M
¹ 32 32 ¹ s

M
¹ 64,

respectively.

5.6.1. Absence of an Inverse Cascade

Figure 14 summarizes how energy spreads from each
selected band into adjacent bands. It establishes that the
predominant movement is toward higher There is nok

M
.

evidence for an inverse cascade. A more detailed demons-
tration for the selected band is provided in8 ¹ s

M
¹ 16

Figure 15, which is based on simulation D6.

5.6.2. Resolution Dependence

Figure 16 compares results from simulation D7 of
resolution 128 ] 128 ] 512 with those from simulation D8
of resolution 256 ] 256 ] 512. Each simulation is initial-
ized with energy in up-waves conÐned to the band 16¹

Note how well the energies in the central and left-s
M

¹ 32.
hand bands from the two simulations match as they evolve.
This establishes that the largest band in simulation D7 isk

Ma valid part of the inertial range.

5.6.3. Cascade T ime

As a standard measure of the timescale for energy transfer
across we take where is obtained fromj

M
, t

c
D j

M
/vjM, vjMthe transverse structure functions of downward-

propagating waves according toAlfve� n 2vjM2 \ SFTA�
(j

M
).

Banded simulations also permit a more direct measure of
the cascade time as that at which the energy in the right-
hand band matches that in the central band. We identify
this version by the symbol t

h
.

Values for the di†erent types of cascade time are given in
Table 3. Even for the lowest band, each is substantiallyk

M
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FIG. 14.ÈSummary of bandpass-Ðltered simulations. We plot the
energy as a function of time in the center band and in the bands imme-
diately to its left and right for each bandpass-Ðltered simulation. Initially,
all the energy is in the central band. As time passes it spreads into adjacent
bands. Points correspond to simulation D8, which is initialized with the
same up-mode band as simulation D7, but with twice the transverse
resolution in the down modes. There is good agreement between simula-
tions D7 and D8, as is shown in more detail in Fig. 16.

smaller than the time, *t \ 1, that waves take to cross the
computational box.

For ease of comparison, we plot the tabulated values
against in Figure 17. Note that declines muchk

M
L
M
/(2n) t

hmore slowly with increasing than doesk
M

t
c
.

FIG. 15.ÈAbsence of an inverse cascade. Dashed lines depict the initial
and Ðnal down-wave spectra. The up-wave spectra are plotted at a suc-
cession of times di†ering by *t \ 0.05. Almost all the energy that leaves the
band moves to higher These data are taken from simula-8 ¹ s

M
¹ 16 s

M
.

tion D6.

FIG. 16.ÈComparison of simulations at di†erent resolutions. Increased
resolution has little e†ect on the evolution of energy in the left-hand and
central bands. Thus, the latter resides in the inertial range in even the lower
resolution simulation. Energy that moves into the right-hand band is more
rapidly dissipated in the lower resolution simulation and more e†ectively
stored in the higher resolution one.

TABLE 3

CASCADE TIMES

s
M

j
M
/L

M
v
M

t
c
\ j

M
/v

M
t
h

t
h
/t

c

2È4 . . . . . . . . 0.188 3.28] 10~3 0.115 0.152 1.32
4È8 . . . . . . . . 0.094 2.67] 10~3 0.070 0.115 1.64
8È16 . . . . . . . 0.047 2.10] 10~3 0.045 0.080 1.78
16È32 . . . . . . 0.023 1.58] 10~3 0.029 0.058 2.00
32È64 . . . . . . 0.0117 1.29] 10~3 0.0181 0.044 2.43

FIG. 17.ÈCascade times : comparison of cascade times based on di†er-
ent deÐnitions. See text for details.
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up-modes. L eft : Gray-scale image of in a (x, y) slice at z\ 0. Right : Image based on the same Fourier coefficients withFIG. 18.ÈAlfve� n o$ Â A
�
o

random phases, shown for comparison.

5.7. Intermittency
Simulations of hydrodynamic turbulence exhibit struc-

ture that is not seen in random phase realizations of velocity
Ðelds with identical power spectra (Jimenez, Wray, &
Sa†man 1993). We Ðnd the same to be true for MHD turbu-
lence. This is illustrated in Figures 18È21. The left panels
display magnitudes of the curls of upward- and downward-
propagating shear and slow waves in a (x, y) slice atAlfve� n
z\ 0 taken from simulation F5. Randomizing the phases of

the Fourier coefficients used to generate the left panels
yields the images shown in the right panels. Coherent struc-
tures, which are conspicuous in the former, are absent in the
latter.

While the eye does an excellent job of recognizing inter-
mittency, it is helpful to have a quantitative measure. To
accomplish this, we apply a sequence of high-pass Ðlters to
the Fourier coefficients of the Elsasser Ðelds and a sequence
of low-pass Ðlters to their gradients. A Ðlter is identiÐed by a

down-modes. L eft : Gray-scale image of in a (x, y) slice at z\ 0. Right : Image based on the same Fourier coefficients withFIG. 19.ÈAlfve� n o$ Â A
�
o

random phases, shown for comparison.
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FIG. 20.ÈSlow up-modes. L eft : Gray-scale image of in a (x, y) slice at z\ 0. Right : Image based on the same Fourier coefficients with randomo$ Â S
�
o

phases, shown for comparison.

value of High-pass Ðlters remove modes with smallers
M
. s

Mand low-pass Ðlters remove those with larger Transverses
M
.

structure in the Elsasser Ðelds is dominated by low s
Mmodes and that in their gradients by high modes. Apply-s

Ming a sequence of high-pass Ðlters with increasing to thes
MFourier coefficients of the Elsasser Ðelds emphasizes struc-

ture of decreasing scale. Similarly, applying a sequence of
low-pass Ðlters with increasing to the Fourier coefficientss

Mof the gradients of the Elsasser Ðelds targets structure of
increasing scale.

Filtered data is obtained from the simulations used to
produce Figures 18È21. Normalized fourth-order moments
of relevant quantities q are computed according to

M4(q) \ Sq4T
Sq2T2 , (71)

where angle brackets denote volume average.
Figure 22 displays moments of the Elsasser Ðelds as a

function for high-passÈÐltered data. Moments of gra-k
M

FIG. 21.ÈSlow down-modes. L eft : Gray-scale image of in a (x, y) slice at z\ 0. Right : Image based on the same Fourier coefficients witho$ Â S
�
o

random phases, shown for comparison.
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FIG. 22.ÈNormalized fourth-order moments for and slowAlfve� n
modes. Plotted points show average values of moments obtained from
upward- and downward-propagating waves. The location of the high-pass
Ðlter is denoted by k

M
.

dients of the Elsasser Ðelds as a function of for low-passÈk
MÐltered data are plotted in Figure 23. For comparison, each

Ðgure includes moments obtained from the random phase
versions of the corresponding simulations. It is worth
noting that for data obeying n-M4(q) \ 1 ] 2/n
dimensional Gaussian statistics, and that slow waves corre-
spond to n \ 1 and shear waves to n \ 2 in the limitAlfve� n
k
M

? k
z
.

FIG. 23.ÈNormalized fourth-order moments from gradients of Alfve� n
and slow modes. Gradients are deÐned as where q is one of theL

x
q,

Elsasser Ðelds. Moments obtained from upward- and downward-
propagating waves are averaged. The location of the low-pass Ðlter is
denoted by k

M
.

5.7.1. Passive Scalar

Intermittency also characterizes the concentration of the
passive scalar. In the left and right panels of Figure 24, we
plot the magnitude of the gradient of the passive scalar
computed in our highest resolution simulation F5. The con-
trast between the simulation and random phase data is
striking. Coherent structures that are prominent in the
former are absent from the latter.

FIG. 24.ÈPassive scalar gradient magnitude, o+c o , from our highest resolution, 256 ] 256 ] 512, simulation F5. The image plane is z\ 0. Simulation
data and their random phase transforms are plotted in the left and right panels, respectively.
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6. DISCUSSION OF RESULTS

6.1. Comparison W ith GS Model
The GSI model for the inertial-range cascade of strong

MHD turbulence is based on two assumptions :

1. Energy transfer is local in wavenumber space.
2. Linear and nonlinear timescales maintain near

equality.

These assumptions lead to two predictions :

1. The one-dimensional energy spectrum E(k
M
)P k

M
~5@3.

2. The cascade is anisotropic, with energy conÐned
within a cone k

A
P k

M
2@3.

Results from simulations presented in °° 5.1 and 5.2 agree
with some aspects of the GS model and di†er with others.
An analysis of the reality and meaning of the departures
from the GS scalings is presented in ° 6.6.

6.1.1. Power Spectra and Structure Functions

The one-dimensional power spectra displayed in Figures
3 and 4 exhibit inertial-range slopes, closer to [3/2mps,than to the [5/3 predicted in GSI. This is consistent with
the slopes of the transverse structure functions, shownmsf,in Figure 6 being close to 1/2. Since power spectra and
structure functions are related by Fourier transforms, these
slopes satisfy mps ] msf\ [1.

A clear increase of anisotropy with decreasing scale is
demonstrated in Figure 7. It is consistent with the predic-
tion by GSI that Cho & Vishniac (2000) give thej

A
P j

M
2@3.

initial conÐrmation of this relation.

6.1.2. Critical Balance

Equality of linear and nonlinear timescales, also known
as critical balance, predicts that Figure 8j

A
/vA Bj

M
/vjM.shows that the ratio maintains a values \ (j

A
vjM)/(jM

vA)
near unity throughout the inertial range, as predicted in
GSI. However, there is a marginal problem of consistency.
Together, and s \ const imply but thej

A
P j

M
2@3 vjM P j

M
1@3,

transverse structure function from which we obtain tovjMuse in forming s yields vjM P j
M
1@4.

6.1.3. Cascade T imes

Two measures of the cascade time are plotted against k
Min Figure 17 ; and Each exhibits at

c
D j

M
/v

M
t
h
D v

M
2/v.

power-law dependence on with the formerÏs slope beingk
M
,

steeper than the latterÏs. For both and wouldv
M

P j
M
1@3, t

c
t
hbe proportional to However, they are not. Clearly,j

M
~2@3.

which yields and provides av
M

P j
M
1@4, t

c
P j

M
3@4 t

h
P j

M
1@2,

better, although still imperfect Ðt. A speculative explanation
for the di†erence between and is o†ered in ° 6.6.4.t

c
t
h

6.2. Slow Modes
6.2.1. T heir Passive Role in Cascade

The passive role played by slow waves in nearly trans-
verse MHD cascades is neatly illustrated by Figure 12. GSII
anticipate this behavior and o†er a brief motivation. We
provide an intuitive explanation in terms of Ðeld-line
geometry in ° 3.3.2. A mathematical derivation based on the
equations of motion written in terms of Elsasser variables
(eq. [19]) is outlined below. Consider the evolution of
upward-directed waves in a cascade whose anisotropy is

measured by the scale-dependent angle The# B k
A
/k

M
> 1.

nonlinear terms and $P in equation (20) arew
�

Æ $w
�responsible for their cascade. For comparable magnitudes

of slow and shear waves, is smaller by aAlfve� n w
d

Æ $w
ufactor of # if than if where s and a are thew

d
P s w

d
P a,

unit polarization vectors of slow and shear waves, asAlfve� n
deÐned in equation (18). Since the term is the solew

d
Æ $w

usource of P, the same comparison applies to the $P term.
Note that these comparisons hold for both shear andAlfve� n
slow waves. Since they are independent of the degree ofw

unonlinearity, they apply to the intermediate MHD cascade
as well as to the strong one.

6.2.2. L ack of Conversion of Shear Waves to Slow WavesAlfve� n

Figure 13 demonstrates that the conversion of shear
waves to slow waves is of negligible signiÐcance inAlfve� n

MHD cascades. GSI present the original prediction. A
modiÐed version of the argument given there is described
below. It compares the rate at which slow waves are created
in a balanced cascade composed entirely of shear Alfve� n
waves to the rate at which the shear waves cascade.Alfve� n

Our starting point is the Fourier transformed equation of
motion for upward-propagating waves written in terms of
Elsasser variables,

C L
Lt

[ iu(k)
D

w8
�
(k) \ [ i

8n3
P

d3k1 d3k2Sw8
�
(k1)

[ kü [kü Æ w8
�
(k1)]T[k Æ w8

�
(k2)]] d(k1] k2 [ k) , (72)

where is the linear frequency of the shearu(k) \ k
z
vAand slow waves. The rates of change of the ampli-Alfve� n

tudes of slow and shear waves with wavevector k in aAlfve� n
cascade of pure shear waves are given byAlfve� n

C L
Lt

[ iu(k)
D

S3
�
(k) \ [ i

8n3
P

d3k1 d3k2

] [sü (k) Æ A3
�
(k1)][k1 Æ A3

�
(k2)]d(k1] k2 [ k) , (73)

and

C L
Lt

[ iu(k)
D

A3
�
(k) \ [ i

8n3
P

d3k1 d3k2

] [aü (k) Æ A3
�
(k1)][k1 Æ A3

�
(k2)]d(k1] k2 [ k) . (74)

Let us compare these two rates.15 The magnitude of sü (k) Æ
is smaller than that of by the scale-A3

�
(k1) aü (k) Æ w8

�
(k1)dependent anisotropy factor Thus, only a# D k

z
/k

M
> 1.

fraction of the energy in shear waves is#2(k
M
) > 1 Alfve� n

converted into slow waves as the shear wavesAlfve� n
cascade across This accounts for the negligible pro-k

M
.

duction of slow waves as shown in Figure 13.

6.3. Dynamics of Imbalance
The proclivity of MHD cascades for imbalance is a con-

sequence of nonlinear interactions being restricted to colli-
sions between oppositely directed waves.

15 The net growth rate of shear waves vanishes in a steady stateAlfve� n
cascade. Restricting the integral to yields the rate at which thek1¹ k
amplitude of grows due to the cascading of longer upward-A

�
(k1\ k)

propagating shear waves.Alfve� n
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6.3.1. Forced Turbulence

Large Ñuctuations are observed in the energies of di†er-
ent wave types in simulations of forced turbulence. Never-
theless, the imbalance appears to be bounded. Figure 10
provides an excellent example of this behavior.

A simple dynamical model suffices to capture the essence
of imbalance in forced MHD turbulence. It consists of the
coupled equations

dE
�

dt
\ [E

�
E

�
1@2

L
] " and

dE
�

dt
\ [E

�
E

�
1@2

L
] " ,

(75)

where E denotes the energy density of the shear Alfve� n
waves, L the transverse outer scale, and " the excitation
rate. The equilibrium energy density and the nonlinear
cascade timescale are deÐned by andEeq\ ("L )2@3 t

c
\

L2@3/"1@3, respectively.
To investigate the stability of forced balanced cascade, we

set

E
�
\ Eeq] *E

�
and E

�
\ Eeq] *E

�
, (76)

and then substitute these expressions into equation (75) to
obtain

d*E
�

dt
\ [ 1

2t
c

(2*E
�
] *E

�
) and

d*E
�

dt
\ [ 1

2t
c

(2*E
�
] *E

�
) . (77)

Assuming a time dependence proportional to est, we Ðnd
eigenvalues

s1\ [ 1
2t

c
and s2\ [ 3

2t
c
. (78)

This establishes the stability of the forced balanced cascade.
It also shows that Ñuctuations associated with the eigen-s1mode decay rather slowly. These characteristics accord well
with the runs of wave energy densities displayed inAlfve� n
Figure 10.

A more sophisticated analysis would include a proper
statistical treatment of forcing and an investigation of the
spectrum of Ñuctuations.

6.3.2. Decaying Turbulence

Simulations of decaying MHD turbulence exhibit large
imbalances. Thus, a perturbation analysis is inappropriate.
Fortunately, for "\ 0 equation (75) admits an analytic
solution. As is easy to verify by direct substitution, *E1@2 4

is a constant, andE
�
1@2[E

�
1@2 \ *E01@2

d
dt

ln
AE

�
E

�

B
\ *E01@2

L
. (79)

Thus, imbalance grows exponentially in decaying turbu-
lence. This accounts qualitatively for the behavior seen in
Figure 11.

Dobrowolny, Mangeney, & Veltri (1980) propose the
growth of imbalance in decaying MHD turbulence as an
explanation for the fact that the preponderance of shear

waves in the solar wind propagate outward alongAlfve� n
the interplanetary magnetic Ðeld. Support for this proposal
is provided by simulations described in Pouguet, Mene-
guzzi, & Frisch (1986).

6.3.3. Axial Asymmetry

Axial asymmetry refers to a net polarization of shear
waves. This can occur even in a balanced cascade.Alfve� n

MHD cascades have a tendency to develop axial asym-
metry because the strength of nonlinear interaction between
oppositely directed shear waves 1 and 2 is pro-Alfve� n
portional to (see eq. [74]). Thus, the interactionaü (k1) Æ aü (k2)vanishes for parallel polarizations and is strongest for
orthogonal polarizations.

Decaying turbulence is unstable to the growth of axial
asymmetry. Waves with the subdominant polarization
cascade more rapidly that those with the dominant polar-
ization. Axial asymmetry is bounded in forced turbulence.
However, correlated Ñuctuations occur across the inertial
range within regions of spatial scale comparable to the
outer scale, since the cascade tends to preserve polarization
alignment.

6.4. Intermittency
Tubes of high vorticity, often referred to as worms, are

prominent features in simulations of hydrodynamic turbu-
lence. Worms have diameters of the order of the dissipation
scale and lengths approaching the outer scale. They are
thought to form from the rolling up of vortex sheets. In spite
of their prominence, worms do not a†ect the inertial-range
dynamics (Jimenez et al. 1993).

Coherent structures are also evident in MHD simula-
tions. Examples are shown in ° 5.7, where the magnitudes of
the curls of the dynamical Ðelds and of the gradient of the
passive scalar are plotted in (x, y) slices. These regions have
narrow dimensions, comparable to the dissipation scale and
lengths approaching the outer scale In these respectsL

M
.

they resemble worms. We suspect that these structures are
vortex sheets that extend along the z-axis and that the mag-
netic Ðeld prevents them from rolling up. Their correlation
lengths along z are unresolved. However, this is not a strong
constraint, since k

Mz
L
M

B 0.3.

6.5. Comparison with Previous Simulations
Shebalin et al. (1983) report the development of anisot-

ropy in isotropically excited MHD. Their simulations are
two-dimensional, with one axis parallel to the direction of
the mean magnetic Ðeld. Thus, they are composed entirely
of slow waves. An isotropic distribution of slow waves will
initiate an anisotropic cascade. However, nonlinear inter-
actions among slow waves weaken as the cascade becomes
more transverse because their strength is proportional to
coefficients such as and fork2 Æ S

�
(k1), k ] k

M
, sü ] zü .16

Convincing demonstrations of the development of anisot-
ropy in fully three-dimensional MHD simulations are pre-
sented in Oughton, Priest, & Matthaeus (1994) and
Matthaeus et al. (1998). Each of these papers provides evi-
dence that anisotropy increases at smaller scales. Each also
claims that up to a saturation limit, anisotropy is more

16 This remains true in three dimensions.
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pronounced the larger the ratio of mean to Ñuctuating mag-
netic Ðeld strength. Matthaeus et al. note that this latter
trend is inconsistent with the scaling for anisotropy pro-
posed by GSI.

An analysis by Cho & Vishniac (2000) clears up the con-
fusion regarding the scale dependence of anisotropy in
MHD turbulence. Unlike previous workers, who measured
anisotropy in coordinate systems Ðxed to the sides of their
computational boxes, Cho & Vishniac compute anisotropy
in local coordinate frames tied to the direction of the total
magnetic Ðeld. We follow their technique of using structure
functions computed in directions parallel and perpendicular
to that of the local magnetic Ðeld (see ° 5.2.1). Both they and
we Ðnd results that are consistent with the relation j

A
P

proposed by GSI. However, the ratio of the Ñuctuatingj
M
2@3

to mean Ðeld is D0.5 in their simulations and D0.01 in
ours.

6.6. Departure from GS Scalings
The GS scalings lead to the unambiguous prediction of

a scale-dependent anisotropy and a one-k
A

P k
M
2@3,

dimensional Kolmogorov spectrum WhileE(k
M
)P k

M
~5@3.

our simulations are in accord with the former, they consis-
tently indicate that the one-dimensional power spectrum
has an index closer to 3/2 than 5/3.

We do not know whether our simulation method is
producing an anomalous power law or whether we have
discovered a feature of MHD turbulence that is not incorp-
orated in the GS scalings. We Ðrst examine several e†ects
that might produce anomalous power laws in numerical
simulations. Then we o†er some speculations about the role
of intermittency.

6.6.1. Forcing

Borue & Orsag (1994) attribute the k~1.85 inertial range
they Ðnd for a simulation of hydrodynamic turbulence to
temporal intermittency associated with forcing. We are
unable to discern any di†erence in the inertial-range slopes
from our simulations of forced and decaying MHD turbu-
lence. As an example, compare the shear waveAlfve� n
spectra from both the forced simulation F1 and the decay-
ing simulation D3, which are plotted in Figure 13.

6.6.2. Dealiasing

Energy loss in our simulations is due to a combination of
dealiasing and hyperviscosity, as illustrated in Figure 9 for
F2, one of our intermediate-resolution simulations. Their
relative importance depends on the parameter l(nN/2)1@3,
deÐned in equation (68). With our choice of viscosity
parameters, dealiasing contributes relatively less of the
energy loss in our lowest resolution simulation F1 and rela-
tively more in our highest resolution simulation F5.
However, all of our simulations show similar inertial-range
slopes, as a comparison of Figures 3, 4, and 13 veriÐes. If
there is any signiÐcant di†erence, it is that F5, the highest
resolution simulation, for which dealiasing is least impor-
tant, has the steepest inertial-range slope.

6.6.3. Hyperviscosity

Hyperviscosity applied in hydrodynamic simulations is
known to produce a spurious Ñattening of the one-
dimensional inertial-range slope over a range of k
approaching the viscous cuto† (Borue & Orsag 1994). A

weaker form of this bottleneck e†ect is apparent in the
simulations of MHD turbulence described by Cho & Vish-
niac (2000). Both Borue & Orsag (1994) and Cho & Vish-
niac (2000) employ an eighth-order hyperviscosity. Our
simulations, which use a fourth-order hyperviscosity, show
no indication of a bottleneck e†ect. This can be seen from
the absence of Ñattening of the inertial-range slope at high

in Figures 3 and 4.k
MCould hyperviscosity Ñatten the slope across the entire

inertial range? Muller & Biskamp (2000) suggest that it
does. They present the results of a 5123 simulation with
nearly isotropic forcing that uses Ðrst-order (physical) vis-
cosity. It exhibits an inertial-range slope slightly steeper
than 5/3. Then they mention that a similar calculation done
with second-order hyperviscosity results in a Ñatter inertial
range. To test the e†ect of hyperviscosity on the inertial-
range slope, we carry out simulation F6, which uses physi-
cal viscosity but is otherwise similar to simulation F2. The
one-dimensional spectrum from this simulation is plotted in
Figure 25. Its inertial range appears to have a slope closer
to 3/2 than 5/3. This is not entirely conclusive, because the
inertial range is truncated at the end by forcing andlow-k

Mat the end by viscosity. Higher resolution simula-high-k
Mtions, which are beyond our current computational

resources, are needed to settle this issue.

6.6.4. Speculations

For the moment, let us accept the shallow inertial-range
slope as a real feature of MHD turbulence. How might it be
accounted for? An intriguing possibility is that the nonlin-
ear interactions responsible for the cascade become increas-
ingly intermittent with decreasing scale.

A given degree of spatial intermittency in the energy
density is likely to have more serious consequences for the
turbulent cascade in MHD than in HD. In HD, energy
cascades according to the local value of j/v. But in MHD,

FIG. 25.ÈInertial range computed with ordinary viscosity. Simulation
F6 with and resolution 128 ] 128 ] 512 is similar to simu-l1\ 2 ] 10~4
lation F2, but uses ordinary viscosity instead of hyperviscosity.
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nonlinear interactions are restricted to collisions between
oppositely directed wave packets. Thus, if the spatial Ðlling
factor of the energy density, f, is small, that of the inter-
actions, f 2, is smaller still. This may account for the shallo-
wer slope of as compared to seen int

h
D v

M
2/v t

c
D j

M
/v

M
,

Figure 17 and discussed in ° 6.1.3.
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APPENDIX

A1. SPECTRAL NOTATION

Cartesian coordinates are distinguished by Greek indices that run from 1 to 3. Simulations are carried out in boxes whose
sides have lengths which are partitioned by grid points. Integer coordinate components, and integer wavevectorL a, Na la,components, are deÐned through the relationssa,

xa\
L a
Na

la , where 0¹ la\ Na , (A1)

and

ka \ 2n
L a

sa , where [Na
2

¹ sa ¹
Na
2

. (A2)

The discrete Fourier transform in one dimension is given by

q8 (s) \ 1
N

;
l

q(l)e2nisl@N , (A3)

where the tilde denotes Fourier transform. Generalization to three dimensions is trivial.

A2. SPECTRAL ALGORITHM

A2.1. Fourier Space Equations
We evolve the incompressible MHD equations in Fourier space, where they take the form (Lesieur 1990)

L
t
v8 a\ [ikc

A
dab [ ka kb

k2
B
(pvb vc[

pbb bc) [ l
n
k2nv8 a , (A4)

L
t
b8 a \ [ikb(

pvb ba[
pbb va) [ l

n
k2nb8 a , (A5)

ka v8 a \ 0 , (A6)

ka b
8
a\ 0 , (A7)

L
t
c8 \ [ikb fvb c[ l

n
k2nc8 . (A8)

A2.2. Integration Method
Equations (A4), (A5), and (A8) constitute a system of ordinary di†erential equations with time as the dependent variable

and the Fourier coefficients as the independent variables. We employ a modiÐed version of the second-orderMv8 a, b8 a, c8 N
Runge-Kutta algorithm (RK2) to advance the variables in time. First-order algorithms are substantially less stable than RK2
at the same time step.

RK2 advances the variables across an interval *t in two stages. Derivatives evaluated at the initial time are used to
compute trial values of the variables at the midpoint, *t/2. Then derivatives computed at *t/2 with these trial values are used
to advance the variables from t \ 0 to *t. In symbolic form,

q8 trial(*t/2) \ q8 (0)] L
t
q8 (0)*t/2 (A9)

is followed by

q8 (*t) \ q8 (0)] L
t
q8 (*t/2)*t , (A10)
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where is evaluated using Each stage involves a Ðrst-order Euler (E1) step, in which the derivative isL
t
q8 (*t/2)*t q8 trial(*t/2).

taken to be constant.
We make one departure from standard RK2 and treat di†usive terms with an integrating factor. Consider an equation of

the form

L
t
q8 (k) \ A[ l

n
k2nq8 (k) , (A11)

where A comprises the nondi†usive terms. Its solution, with A constant throughout the interval *t, is

q8 (*t)\
C
q8 (0)] A

l
n
k2n (eln k2n*t[ 1)

D
e~ln k2n*t . (A12)

We use this expression in place of E1 in each stage of RK2. To lowest order in equation (A12) reduces to E1.l
n
k2n*t,

However, it has the advantage that it yields stable solutions to equation (A11) with constant A for arbitrary values of l
n
k2n*t,

whereas E1 yields unstable solutions for l
n
k2n*t [ 2.

A2.3. Dealiasing
Bilinear terms in equations (A4), (A5), and (A8) are calculated by transforming the individual Ðelds to real space, carrying

out the appropriate multiplications there, and then transforming the products back to Fourier space. This requires
operations using the fast Fourier transform (FFT) algorithm; operations wouldN1N2N3 log N1 log N2 log N3 (N1N2N3)2be needed to carry out the equivalent convolution in Fourier space.

This economy comes at the price of either a one-third reduction in resolution or an aliasing error (Canuto 1988). To
appreciate this, consider the one-dimensional product

ppq(s)\ 1
N

;
l

C
;
s{

p8 (s@)e~2nis{l@N ;
s_

q8 (s@@)e~2nis{{l@N
D
e2nisl@N

\ 1
N

;
s{

;
s_

p8 (s@)q8 (s@@)e2ni(s{`s{{)l@Nd
s,s{`s{{`mN

, (A13)

where m is any integer. The m\ 0 terms comprise the convolution, and the remainder the aliasing error. To avoid the aliasing
error, we set all Fourier components with o s o[ N/3 to zero both before we compute the real-space Ðelds and again after we
return the bilinear terms to Fourier space. Truncation ensures that Fourier components of bilinear terms with vanish.mD 0
Its cost is the reduction of the e†ective spatial resolution from N to 2N/3.

A3. TESTS OF THE SPECTRAL CODE

Time derivatives of Ðeld quantities computed with the spectral code agree with those obtained from a Ðnite-di†erence
program with an elliptic incompressible pressure operator. Although the latter is unstable, it o†ers an independent method for
computing time derivatives. The code preserves the solinoidal character of and b. To machine accuracy, it returns¿

and It also conserves energy. Provided that it yieldsk Æ L
t
¿8 (k)\ 0 k Æ L

t
b8 (k)\ 0. l

n
\ 0, L

t
E\ £

k
¿8 (k) Æ L

t
¿8 (k) ]

again to machine accuracy. Harmonic waves are evolved by our spectral code in a mannerb8 (k) Æ L
t
b8(k)\ 0, Alfve� n

consistent with their analytic dispersion relation.
Results obtained from a simulation of decaying hydrodynamic turbulence (Z45) run with our code agree with those from a

more thorough simulation by Jimenez et al. (1993). Our simulation is carried out in a cubic box with L \ 1.0, has resolution
2563, kinematic viscosity l\ 8 ] 10~4, time step *t \ 2.5] 10~4, and is initialized with rms velocity v\ 1.0. We compute
components of the velocity gradient longitudinal, and transverse, to at each point in our computational box.+

A
v
A
, +

M
v
A
, ¿

Distribution functions, of each quantity, q, are compiled and moments calculated according toPF
q
(x),

M
n
\ /~== xnPF

q
(x)

[/~== x2PF
q
(x)]n@2 . (A14)

These are shown in Table 4.

TABLE 4

TESTS OF SPECTRAL CODE

SIMULATION Z45 JIMINEZ ET AL.

n v +
A

v
A

+
M

v
A

v +
A

v
A

+
M

v
A

GAUSSIAN

3 . . . . . . 0 [0.43 0 0 [0.50 0 0
4 . . . . . . 1.6 4.4 5.9 2.8 4.6 6.19 3
5 . . . . . . 0 [6.5 0 0 [8.0 0 0
6 . . . . . . 3.4 48 102 13.0 55 110 15
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Because our simulation is of decaying turbulence, whereas that of Jiminez et al. is forced, appropriate comparisons are
restricted to inner scale quantities derived from components of and exclude outer scale quantities derived from com-$¿,
ponents of With this proviso, our results are in satisfactory agreement with theirs.¿.

A4. CATALOG OF SIMULATIONS

A4.1. Simulations of Forced Turbulence
Our basic simulations include forcing at a total power per unit mass of P\ 2 ] 10~5. Recall that o \ 1 and vA \ 1.

Statistically equal power is input into shear and slow waves propagating in opposite directions along the magneticAlfve� n
Ðeld. Higher resolution simulations run for shorter times are initialized by reÐning lower resolution simulations run for longer
times.

Our sequence of forced simulations begins with F1, which has resolution 64] 64 ] 256 and runs up to t \ 6.6. Initial
condition for simulations F2, F3, and F4 with resolutions 128] 128 ] 512 are drawn from F1 at t \ 2.4, 4.7, and 6.6,
respectively. These are times at which the Ñuxes of oppositely directed shear waves in F1 nearly balance. The reÐnedAlfve� n
simulations are run for an additional *t \ 0.4, long enough for small-scale structure to develop up to the dealiasing cuto†.
Our highest resolution, 256 ] 256 ] 512, simulation F5 is initialized from F2 at t \ 2.8 and run until t \ 2.95.

A4.2. Simulations of Decaying Turbulence
Our simulations of decaying turbulence are designed to test speciÐc properties of the MHD cascades. Simulation D1

continues F1 without forcing from t \ 2.8 to 9.9. Simulations D2 and D3 are initialized from F1 at t \ 6.6, the former by
removing the down and slow up-waves, and the latter by removing all slow waves. A series of simulations areAlfve� n
initialized from forced simulations by removing all upward-propagating waves outside a speciÐed band, while leaving the
down-modes unchanged. Simulations D4, D5, D6, and D7 are each initialized from F2 at t \ 2.8, with the up-modes
band-Ðltered from and respectively. Likewise, simulations D8 and D9 are2 ¹ s

M
¹ 4, 4 ¹ s

M
¹ 8, 8¹ s

M
¹ 16, 16 ¹ s

M
¹ 32,

initialized from F5 at t \ 2.95 with up-modes band-Ðltered from and respectively. The former has16 ¹ s
M

¹ 32 32 ¹ s
M

¹ 64,
the same up-band as D7 but twice the transverse resolution.
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