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ABSTRACT

Finite-difference simulations of fluid dynamics and magnetohydrodynamics generally require an explicit diffusion
operator, either to maintain stability by attenuating grid-scale structure, or to implement physical diffusivities such
as viscosity or resistivity. If the goal is stability only, the diffusion must act at the grid scale, but should affect
structure at larger scales as little as possible. For physical diffusivities the diffusion scale depends on the problem,
and diffusion may act at larger scales as well. Diffusivity can undesirably limit the computational time step in both
cases. We construct tuned finite-difference diffusion operators that minimally limit the time step while acting as
desired near the diffusion scale. Such operators reach peak values at the diffusion scale rather than at the grid scale,
but behave as standard operators at larger scales. These operators will be useful for simulations with high magnetic
diffusivity or kinematic viscosity such as in the simulation of astrophysical dynamos with magnetic Prandtl number
far from unity, or for numerical stabilization using hyperdiffusivity.

Key words: diffusion – hydrodynamics – methods: analytical – methods: numerical – MHD – turbulence

1. INTRODUCTION

Astrophysics is rich in phenomena where diffusivity poses an
obstacle to simulation. The obstacle arises when diffusion poses
a more stringent time step limit than other dynamics. This can
happen either when its physical magnitude is large, when it is
used to model effects such as viscosity, resistivity, conductivity,
or the diffusion of passive scalars; or when hyperdiffusion is
used to maintain numerical stability.

One significant example of such an obstacle occurs in
modeling astrophysical dynamos. These generate magnetic
fields in galaxies, stars, planets, and accretion disks. In such
systems, the ratio of the kinematic viscosity ν to the magnetic
diffusivity η, known as the magnetic Prandtl number PrM = ν/η,
normally takes on values far from unity. Maron et al. (2004)
and Boldyrev & Cattaneo (2004) find that the dynamics of
these dynamos depend on the value of PrM . Simulations of
astrophysical dynamos such as those performed by Brandenburg
(2001), Schekochihin et al. (2005), Iskakov et al. (2007),
and Brandenburg (2008), therefore require implementation
of diffusion operators with large magnitudes to capture the
magnetohydrodynamical (MHD) behavior of interest. More
generally, in any turbulent flow, reducing the diffusion scale
increases the effective resolution of a simulation. It has been
shown that this can be achieved through the use of fourth
or sixth-order hyperdiffusivities (ν4∇4 or ν6∇6) to maintain
numerical stability and dissipate turbulence (Brandenburg &
Dobler 2002).

We here consider how to design diffusion and hyperdiffusion
operators such that they have the desired behavior at the
diffusion scale and larger scales, while still restricting the
numerical time step as little as possible. The time step depends
inversely on the strength of the diffusion

Δt = Δx2/2ν. (1)

Classical diffusion operators such as Laplacian viscosity (ν∇2),
or fourth or sixth-order hyperdiffusivities, reach their maximum
values at the grid scale, but act at the larger diffusion scale where
the effective diffusivity is lower. The operators designed here
reach their maximum value at the diffusion scale rather than

at the grid scale, so that they limit the time step no more than
necessary.

In a spectral code, the diffusive terms are linear and can thus
be handled spectrally without limitation on the time step. For
example, let a field evolve as ∂tV = A+ν∇2V, where A denotes
the nondiffusive terms. In Fourier space, ∂t V̂ = A − νk2V̂. The
solution, with A constant throughout the interval Δt , is

V̂(Δt) =
[

V̂(0) +
A

νk2
(eνk2Δt − 1)

]
e−νk2Δt . (2)

When evolved in Fourier space, the diffusivity operator is
stable for any value of νk2Δt, whereas in physical space,
instability occurs if νk2Δt > 2 (restating Equation (1) in terms
of wavenumber).

However, finite difference codes do have advantages that
make them worth pursuing: they use fewer floating-point opera-
tions per grid point; they can be more easily parallelized without
the all-to-all communications required for Fourier transforms;
they are not restricted to periodic boundary conditions; and they
handle discontinuous jumps more robustly.

The Navier–Stokes equation can include a number of different
types of diffusion operators:

∂tV = − V · ∇V − ρ−1∇P + ν2∇2V − ν4∇4V + ν6∇6V
− ν ′

4(∂4
x + ∂4

y + ∂4
z )V + ν ′

6(∂6
x + ∂6

y + ∂6
z )V − νDD[V],

(3)

where the ν2 term is the usual Laplacian physical viscosity, the
νn and ν ′

n terms are nth-order hyperviscosities, the term νDD(V)
is a customized diffusion operator.

Either the sixth-order hyperdiffusivity term or the physical
diffusivity can maintain numerical stability. The hyperdiffusiv-
ity has been advocated (Brandenburg 2003) because it pref-
erentially diminishes the high-wavenumber structure without
modifying low-wavenumber structure. If the problem does re-
quire true physical diffusivities, we still want to consider the use
of a customized operator. This would reduce excess diffusion
at scales well below the diffusion scale. Such excess diffusion
limits the time step without further modifying the solution as no
structure exists at those scales.
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To date the focus in the study of extensions to numerical
diffusion has been on such hyperdiffusivities (e.g., Borue
& Orszag 1995; Brandenburg 2003), as exemplified by the
hyperviscosities described in Equation (3). However, the degrees
of freedom available in the finite difference coefficients can be
used instead for different goals.

In this paper, we describe methods for customizing diffusion
operators that can be used to design operators that protect
the time step while either minimizing diffusion or reproducing
the physical diffusion operator at low wavenumber as well as
possible. These methods can also be used to design different
diffusion operators for other purposes. These methods rely on
the tuning techniques used by Maron et al. (2008) for improving
the high-wavenumber accuracy of finite-difference derivatives.

In Section 2, we summarize the constraints that lead to the
need for tuning finite difference operators. We then describe
operators suitable for implementing both numerical (Section 3)
and physical (Section 4) diffusivities, and we summarize our
results in Section 5.

2. TUNING FINITE-DIFFERENCE OPERATORS

Let us consider the question of how to tune a general, cen-
tered (symmetric) finite-difference operator, since all diffusion
operators must be centered. We follow the treatment of the tun-
ing of antisymmetric operators such as first derivatives given
in Maron et al. (2008). Such tuning allows us to customize the
wavenumber spectrum of the operator to meet the needs of the
problem at hand, rather than relying on simple analytic forms.
This allows us, for example, in a problem with large Laplacian
diffusivity, to trade small deviations from Laplacian behavior at
low wavenumber for large gains in the time step, by limiting the
diffusion at high wavenumber. The deviations from Laplacian
at low wavenumber can be maintained at levels small enough to
not affect realistic simulations. We use both analytic solutions
and numerical optimization to improve the spectral performance
of the operators.

As an example of finite-difference representations of centered
operators we examine second and fourth derivatives. Define a
function fj (xj ) on a set of grid points xj = j, with j being
an integer. Then construct a finite-difference operator for the
second derivative f [2] by sampling a stencil of grid points with
radius S. Without loss of generality, we center the operator on
j = 0 and use a grid interval of Δx = 1. The familiar result for
a second derivative on a radius-1 stencil is

∂2
xf (x)|x=0 = −2f0 + f1 + f−1, (4)

which is obtained from fitting a polynomial of degree 2 to fj .
For a fourth derivative, we can fit a degree 4 polynomial on a
radius-2 stencil,

∂4
xf (x)|x=0 = −6f0 + 4(f−1 + f1) − (f−2 + f2). (5)

In general, a centered operator on a stencil of order S can be
represented as

m0f0 +
S∑

j=1

mj (f−j + fj ). (6)

Consider the value of the finite-difference operator at x = 0
for a Fourier mode f = cos(πkx). (Sine modes can be ignored
because they do not contribute to the second derivative at
x = 0.) The wavenumber k is scaled to grid units so that

Figure 1. Values of ∂2
x cos(πkx) = (πk)2, evaluated at x = 0, and the different

finite-difference operators having coefficients listed in Table 1. Two examples of
polynomial-based difference operators with stencil radii S = 1 and highest order
two and S = 3 and highest order six are shown, along with the three examples
of operators tuned with different choices of the beginning of the diffusive range
kd .

k = 1 corresponds to the maximum (Nyquist) wavenumber
π (Δx)−1 expressible on the grid. The analytic value for the
second derivative is −π2k2 times the function value, whereas
the finite difference operator (Equation (6)) gives

f [2] ∼ m0 + 2
S∑

j=1

mj cos(πjk) ≡ −D(k). (7)

This defines a function D(k) that, when positive, acts as a
diffusion applied to f (x), because the Fourier modes of f evolve
as ∂t f̂ = −νDD(k)f̂ , where νD is a viscositylike parameter
that sets the level of diffusion. The maximum diffusive time
step is given by the inverse of the maximum value of D(k) over
0 < k < 1:

Δt <
1

νD max[D(k)]
. (8)

Ideally, D(k) should scale as (πk)2 for k < kd and should be
constant for k > kd. The focus of this work is on customizing
the form of D(k) so as to increase the maximum diffusive time
step, and, in the case of hyperdiffusion, also minimize low-k
diffusion.

Figure 1 shows D(k) for finite-difference stencils of radius
S = 1 (second order) and S = 3 (sixth order), in comparison to
the analytic value, demonstrating how higher order more closely
mimics the analytic function. The coefficients of these functions
are listed in Table 1. The operator D(k) can be Taylor expanded
in the form

D(k) = D0 + D2k
2 + D4k

4 + D6k
6 . . . . (9)

An operator that reproduces ∂2 for all k would have D2 = π2

and all the rest of the coefficients Dn = 0 for n �= 2. The
radius-1 stencil (Equation (4)) has D0 = 0 and D2 = π2,
but the higher order coefficients are unconstrained, while the
radius-2 stencil (Equation (4)) sets D0 = D4 = 0 and D2 = π2.
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Table 1
Coefficients for Time-Step-Friendly Laplacian Diffusion Operators

m0 m1 m2 m3 m4 m5

∂2, Second order −2 1 . . . . . . . . .

∂2, Sixth order −2.72222 1.5 −0.15 0.01111 . . . . . .

kd = 1/2 −1.514721 0.5692471 0.2524535 −0.0643401 . . . . . .

kd = 3/8 −0.9148711 0.2609054 0.2059354 −0.0094052 . . . . . .

kd = 1/4 −0.4334820 0.0752718 0.0696988 0.0717703 . . . . . .

kd = 7/32 −0.2733333 0.0179722 0.0172444 0.1014500 . . . . . .

kd = 3/16 −0.2679784 0.0393498 0.0283651 0.0304570 0.0358173 . . .

kd = 9/64 −0.1317918 0.0097316 0.0094934 0.0088189 0.0081529 0.0296992
kd = 3/32 −0.0585600 0.0029213 0.0030688 0.0029842 0.0027554 0.0026748

Notes. The coefficients for a finite-difference operator for ∂2
x . The second- and sixth-order entries are for a polynomial fit on a radius 1 and 3 stencil,

respectively. The “kd” entries are the tuned diffusion operators discussed in Section 4. These functions are shown in Figure 1. The last entry, for
kd = 3/32, additionally has m6 = 0.0024189, m7 = 0.0024876, and m8 = 0.0099690.

The usual way to evaluate an operator for a function such
as ∂2 is to fit a maximal order polynomial to the points in the
stencil. This yields equations that can be inverted to find the mj
coefficients in Equation (7) for stencil radius S:

D0 = − m0 − 2
S∑

q=1

mq, (10)

Dp = − 2πp

p!
(−1)p/2

S∑
q=1

qpmq,

for even p. We call such operators polynomial-based operators.
The form of these operators is shown in Figure 2. We may,
however, use the available degrees of freedom in different ways.
The goal of fitting a high-order polynomial to the derivative
is to have high accuracy at high wavenumber. However, that
may actually contradict the goal of protecting the time step
while either minimizing diffusion or reproducing the physical
diffusion operator at low wavenumber. Instead, we can use
the available degrees of freedom to directly address these
requirements.

As an example, for a Kolmogorov cascade, the diffusive scale
λν and the viscosity ν scale as λν ∼ ν3/4. The viscosity can be
made sufficiently large that λν is substantially larger than the
grid scale, and the velocity profile will be smooth at smaller
scales. The cascading energy is eliminated at the diffusive scale,
so there is no need for higher diffusivity at smaller scales, yet
because of the form of the Laplacian diffusivity operator, the
diffusivity increases all the way down to the grid scale. This
excess diffusivity is unnecessary, and in fact is a liability because
it restricts the time step.

Laplacian diffusion operators, or steeper operators such as
hyperdiffusivities, rise in amplitude monotonically all the way to
the Nyquist wavenumber k = 1. A large value of D(1) requires
a small time step, but is unnecessary because energy cascading
from higher scales is removed earlier at the diffusion scale kd .
D(k) need to only have enough presence above kd to diffuse any
Fourier modes that might arise there. For k > kd, it can be as
large as it is at kd with no additional time step penalty.

This allows us to specify a strategically chosen diffusion
operator that satisfies these requirements. Such an operator
should rise through the diffusion range kd, but then flatten out
and merely remain positive at k > kd . Since this constraint
is much less critical than having controlled diffusion at low k,
the low-k range of D(k) should receive a higher priority in the
optimization than the high-k range.

Figure 2. Time-step-protecting diffusion functions are compared to standard
hyperdiffusivities. Each of these functions approaches k = 0 approximately as
k4, and each has been normalized so that D(1/2) = 1. The function labeled
“2” is the radius-2 stencil finite-difference formula for ∂4, or in other words,
a ∇4 hyperdiffusivity. The function labeled “3” is the radius-3 stencil finite-
difference formula for ∂4. Since it is higher order, it more faithfully represents
the function k4 for large k. However, this is a liability for the time step because it
is more vulnerable to a diffusive time step instability at k = 1 than the radius-2
function. The function labeled “4” has a different objective. It is a radius-4
stencil finite-difference formula for ∂4, but instead of using the extra degrees
of freedom to represent k4 at higher order, they are used to minimize D(k) for
k > 1/2. The function labeled “5” has the same goal as “4” implemented with
a radius-5 stencil.

The behavior of the diffusion function at kd critically deter-
mines its effect on the solution. The diffusion must act at both
the Nyquist scale kNY = 1, for stability, and at the resolu-
tion scale, to damp modes with wavenumbers too large to be
accurately captured by the finite-difference scheme. The reso-
lution scale depends on the details of the method. However, the
common choice of radius-3 stencils for finite differences has
a resolution scale k = 1/2 (Maron et al. 2008), so we choose
in this work to use a diffusion scale kd = 1/2, and examine
diffusion functions normalized to D(kd ) = 1.

In situations where the cascade timescale is faster than the
diffusion timescale, one can often get away with applying
the diffusion operator only once every few time steps, rather
than every time step, effectively removing diffusion from the
computational load. One does this by simply increasing the
magnitude of the diffusion coefficient by a factor of the time
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step delay to compensate for its less frequent application. If
this increased diffusivity is unstable, one then has the option
of employing the flattened operators discussed in this paper to
restabilize the diffusivity. Maron (2004) demonstrated that for a
simulation of incompressible turbulence applying the diffusivity
once every four time steps yielded indistinguishable results from
applying it every time step.

In the next two sections, we describe how we perform the
tuning and give some useful examples of operators for both
hyperdiffusivity and Laplacian diffusivity.

3. TIME-STEP-FRIENDLY HYPERDIFFUSION

In situations where one wishes to maximize the scale range,
and where the diffusion-scale dynamics do not affect larger
scales, one can fruitfully use a diffusion operator that rises more
rapidly with k than a Laplacian. Writing the diffusive terms from
Equation (3) in Fourier space,

∂t V̂ = − ν2k
2V̂ − ν4k

4V̂ − ν6k
6V̂ − ν ′

4(k4
x + k4

y + k4
z )

× V̂ − ν ′
6(k6

x + k6
y + k6

z )V̂ − νdD(k)V̂ (11)

one sees that hyperdiffusive terms such as those proportional to
ν4 and ν6 have a steeper dependence on the wavenumber k than
the Laplacian diffusivity proportional to ν2.

However, energy cascading from larger scales dissipates at
the diffusion scale kd < 1, so increasing the diffusion at k > kd

further is unnecessary. A customized diffusion operator D(k)
can be constrained to have a similarly steep k dependence at low
k, but to then flatten at the diffusion scale kd, so that the value at
the Nyquist wavenumber D(1) is not markedly higher. Since the
time step is limited by the maximum diffusivity on the grid at
any scale, limiting the value of D at small wavenumber protects
the time step.

We note in passing that the ν4 term in Equation (11) contains
two successive Laplacians and therefore two rounds of finite
differences, whereas terms such as (∂4

x +∂4
y +∂4

z ) and D(k) involve
only one round of finite differences, and are therefore favored
for their execution speed. Also, the diffusion function for ∇4

has a greater value in the high-k “corners” of Fourier space than
(∂4

x +∂4
y +∂4

z ), and hence a smaller maximum diffusive time step,
and so for this reason as well, operators such as ∇4 and ∇6 are
disfavored.

We begin by considering diffusion operators with a stencil
radius S = 3, such as those used in the hyperdiffusion
implemented in the Pencil code (Brandenburg & Dobler 2002).
In this case, one can analytically construct a one-parameter
family of functions parameterized by the degree of diffusivity
D(1) at k = 1. As before, we take D(0) = 0, the diffusion scale
kd = 1/2, and normalize D(k) so that D(1/2) = 1. Inverting
Equation (7) with these conditions yields

m0 = −1

2
− 1

4
D(1), (12)

m1 = 1

8
+

7

32
D(1), (13)

m2 = 1

4
− 1

8
D(1), (14)

Figure 3. Family of diffusion functions D(k) for 1 < D(1) < 8 for a stencil
with radius S = 3, represented with solid lines. The dotted line shows the S = 1
operator for ∂2; the addition of the two additional parameters in the S = 3
operator allowed the reduction of diffusivity at both high and low wavenumber
while maintaining the normalization at kd . The D(1) = 4 line is identical to
the standard S = 2 hyperdiffusivity. The functions are all continuous through
D(kd ), so the most diffusive above kd are the least diffusive below it.

m3 = −1

8
+

1

32
D(1). (15)

This also implies that

D4 = π4

(
1

8
− D(1)

16

)
. (16)

The magnitude of D4 is inversely related to the sharpness of the
hyperdiffusive operator. Sharpness of hyperdiffusivity is usually
measured by giving the index of the scaling with wavenumber k
at low k. In this example, however, all the functions we present
have k4 scaling at low k and are normalized at kd, so the lower
the value of the coefficient D4 of the k4 term, the sharper the
hyperdiffusivity.

The free parameter D(1) traces the maximum diffusivity,
at least in the regime D(1) > 2, as shown in Figure 3, and
thus determines the time step. This can be demonstrated by
differentiating D(k) (Equations (7) and (2)) and showing that
in this regime, D′(k) > 0, so D(k) monotonically increases
between 0 < k < 1. For 1 < D(1) < 2, the maximum
diffusivity is not much greater than the diffusivity at k = 1. For
example, for D(1) = 1.5, the maximum diffusivity is D = 1.63
at k = 0.762. The useful range for D(1) is 1 < D(1) < 8
because the case D(1) = 8 corresponds to the operator for ∂6,
which represents the S = 3 hyperdiffusivity operator that is
least diffusive at low wavenumber. Choosing D(1) > 8 results
in D(k) < 0 for some value of k < kd . The choice D(1) = 8
corresponds to the standard hyperdiffusivity used in the Pencil
code. We further find that the best choice to minimize diffusivity
at low k is given by requiring that D′′(0) = 0. If D′′(0) < 0, then
D(k) < 0 at low k, and hence unstable, while for D′′(0) > 0, it
is more diffusive at low k than it could be.

The goals of minimizing the low-k diffusivity and protecting
the time step at high k are at odds if one normalizes the diffusion
magnitude at the diffusion scale D(kd ) = 1. The tradeoffs can
be seen by considering the behavior of D(k) as D(1) is increased
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Table 2
Radius-3 Tuned Diffusion Values

D(1/4) D(1/3) D(1)

0.124 0.328 1.5
0.116 0.312 2.0
0.101 0.281 3.0
0.086 0.250 4.0
0.055 0.187 6.0
0.025 0.124 8.0

Notes. Values of the diffusion function D(k) for k =
1/4,k = 1/3, and k = 1, for the sequence of radius-3
time-step-friendly hyperdiffusion functions with varying
values of D(1).

(Figure 3). Reducing the diffusion for k < kd requires increasing
the diffusion for k > kd, and vice versa. Although the values
are much larger at high wavenumber, the percentage changes
are actually similar in the two regimes (see Table 2 for the low
wavenumber values).

Note that the function with D(1) = 4 is the stan-
dard hyperdiffusion with stencil radius S = 2, which is the
most hyperdiffusive S = 2 operator. This is equivalent to
Equation (5), with the additional normalization D(1/2) = 1.
Adding one extra free parameter by moving to stencil size S = 3
allows both low- and high-wavenumber diffusivity to be tuned,
but we cannot decrease both simultaneously. However, adding
another free parameter by using stencil size S = 4 does allow
both to be decreased (Figure 2). As an additional example, note
that the dotted line in Figure 3 shows the S = 1 diffusivity, while
the S = 3 result with D(1) = 1.5 has decreased diffusivity for
both low and high k. Simultaneously decreasing the diffusion
for k < kd and k > kd while maintaining a constant diffusion at
k = kd thus clearly requires more than one free parameter. With
two or more free parameters, we can simultaneously satisfy both
goals.

Extending the stencil size to S > 3 allows us to further op-
timize the diffusion function. We now have multiple ways in
which we could proceed. We choose to use numerical optimiza-
tion to derive tuned S > 3 operators based on the following
conditions: normalize the diffusion spectrum to D(kd ) = 1; in-
sist that 0 < D(k) < δ for some chosen value of the constant
δ; set D(0) = 0; and require that D monotonically increase for
k < kd . Within these constraints, we maximize D′(kd ), which
measures the sharpness of the operator at kd.

To find the operator satisfying these conditions we use a
multiparameter optimization of the coefficients mj in order to
maximize D′(kd ) within the constraints. We have developed
a novel Monte Carlo routine to perform the optimization. It
evolves the solution by testing randomly selected nearby points,
selecting the best among them and iterating with a search
radius sensitive to the speed of improvement of the solution.
Because different parameters have widely varying ranges, we
use a logarithmic sampling distribution.

In Figure 2, we show the resulting optimized diffusivities
for S = 4 and S = 5. The coefficients for these operators are
given in Table 3. Comparing the S = 2 hyperdiffusivity to the
optimized S = 4 operator gives another example of the benefit
of taking advantage of two free parameters.

4. TIME-STEP-FRIENDLY LAPLACIAN DIFFUSION

Some applications require such large physical diffusivity that
it becomes the dominant constraint on the time step. Examples
include magnetized turbulent flows with separated viscous and
resistive scales so that the magnetic Prandtl number

Pm = ν

η
(17)

is far from unity, where η is the resistivity; and turbulence with
a passive scalar such as temperature that diffuses at a scale
different from the viscous scale so that the Schmidt number

S = ν

κ
(18)

is far from unity, where κ is the diffusivity of the passive
scalar. In this case, the physical diffusivity operators can also be
adjusted so as to cause less harm to the time step.

The procedure that we used to generate coefficients for flat
Lagrangian diffusion operators is to specify a value for kd, and
then constrain D so as to not further increase beyond its value at
the diffusion scale. Specifically, we set D(k) < (πkd )2 for all k.
Within this constraint, we minimize the value of (πkd )2 − D(k)
over k > kd. For a radius S = 3 stencil, this procedure works
for kd as low as 7/32. Any lower than that and D(k) < (πkd )2

cannot be satisfied without D(k) taking on a dangerously small
value for some k > kd, or even worse, becoming negative.
However, increasing the stencil size beyond S = 3 allows for
flat diffusion operators with successively lower values of kd .
Such operators are shown in Table 1, and Figure 1 for S = 3.

5. SUMMARY

We have presented techniques for customizing diffusion
operators with the goal of either decreasing low-k diffusion,
or maximizing the time step, or some combination of both.
We have given concrete examples that cover the commonly
encountered cases, but since the requirements for diffusion
can be problem dependent, we also emphasize techniques for
customizing general diffusion operators.

Turbulent flows offer a major example of the need for
careful choice of the magnitude of either physical diffusivity or
hyperdiffusivity. The relevant magnitude is that at the diffusion
scale νD(kd ), where kd is chosen to match the spectral resolution
of the numerical scheme (Maron et al. 2008). There it must be
large enough to absorb the energy from the turbulent cascade
reaching that scale. The value of ν is generally set empirically
to satisfy this requirement.

Table 3
Coefficients for Time-Step-Friendly Hyperdiffusion Operators

m0 m1 m2 m3 m4 m5

∂4, Fourth order 1.500000 −1. 0.250000 . . . . . . . . .

∂4, Sixth order 1.750000 −1.218750 0.375000 −0.031250 . . . . . .

Tuned, stencil 4 1.231682 −0.775549 0.074534 0.126481 −0.041307 . . .

Tuned, stencil 5 0.911455 −0.511864 −0.033699 0.094005 0.010574 −0.014743
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The techniques developed here can also be applied to
models with Prandtl and Schmidt numbers that are large or
small compared to unity, as well as models with diffusive
chemistry.

We thank J. S. Oishi for useful discussions. We acknowledge
partial support of this work by NSF grant AST06-12724 and
NASA grant NNX07AI74G.
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