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ABSTRACT

Numerical simulations including magnetic fields have become important in many fields of astrophysics. Evolution
of magnetic fields by the constrained-transport algorithm preserves magnetic divergence to machine precision and
thus represents one preferred method for the inclusion of magnetic fields in simulations. We show that constrained
transport can be implemented with volume-centered fields and hyperresistivity on a high-order finite-difference sten-
cil. In addition, the finite-difference coefficients can be tuned to enhance high-wavenumber resolution. Similar tech-
niques can be used for the interpolations required for dealiasing corrections at high wavenumber. Together, these
measures yield an algorithm with a wavenumber resolution that approaches the theoretical maximum achieved by
spectral algorithms. Because this algorithm uses finite differences instead of fast Fourier transforms, it runs faster and
is not restricted to periodic boundary conditions. In addition, since the finite differences are spatially local, this algo-
rithm is easily scalable to thousands of processors.We demonstrate that, for lowYMach number turbulence, the results
agree well with a high-order, nonYconstrained-transport scheme with Poisson divergence cleaning.

Subject headinggs: hydrodynamics — magnetic fields — methods: numerical — MHD — turbulence

1. INTRODUCTION

Many astrophysical flows involve dynamically significant mag-
netic fields, such as molecular clouds, accretion disks, the Galac-
tic dynamo, jets, galaxy clusters, stellar dynamos and coronae,
the solar wind, and the interstellar medium. These problems tend
to be three-dimensional, multiscale, and turbulent, so there is
an ongoing interest in developing high-resolution and efficient
magnetohydrodynamics (MHD) algorithms for them. In this
paper, we outline an extension of the constrained-transport al-
gorithm (Evans & Hawley 1988) to the combination of higher
spatial order and zone-centered grids, and with resolution-
enhanced tuned derivatives. We then describe how these mea-
sures fit together to yield an algorithm that closely approaches
the theoretical maximum wavenumber resolution of spectral
algorithms.

1.1. Constrained Transport

The induction equation for a magnetic field B and a velocity
field V in ideal MHD is

@tB ¼ : < (V < B): ð1Þ

Analytically, this equation conserves magnetic divergence:
@t(: = B) ¼ 0. However, this may or may not be the case for a
finite-difference treatment of this equation. Tóth (2000) reviews
the methods taken by various algorithms to treat the diver-
gence inMHD simulations. A spectral code explicitly projects the
Fourier components so that B̂(k) = k ¼ 0. For a finite-difference
code, themagnetic field can be evolved by a constrained-transport
scheme that preserves the magnetic divergence to machine pre-
cision (Evans & Hawley 1988). Alternatively, if the discretiza-
tion does not conserve magnetic divergence, the divergence can
be removed with measures such as periodic use of a Poisson

solver (Brackbill & Barnes 1980), adding a divergence diffusion
term @tB ¼ 99 = B to the magnetic evolution, or following an
artificial and independently evolving divergence field (Dedner
et al. 2002) to propagate divergence away from where it is pro-
duced and then dissipate it. The Powell scheme (Powell et al.
1999) adds a source term to advect divergence rather than let it
grow in place. A finite-difference code can also employ a vector
potential A such that B ¼ : < A, in which case the magnetic di-
vergence is automatically zero. This requires the use of a higher
order advection algorithm to ensure accurate second derivatives,
as is done in the Pencil code (Brandenburg & Dobler 2002).
We denote any finite-difference scheme for MHD that ex-

plicitly conserves the magnetic divergence to machine precision
as constrained transport (CT), and any scheme that does not as
unconstrained transport (UT). Several variations of CT are pos-
sible. If the electric field is differenced as a curl: @tB ¼ �: < E;
then the magnetic divergence is preserved to machine precision
for most grid types (see Appendix). Evans & Hawley (1988)
introduced CT for staggered grids, and Tóth (2000) showed that
it works for centered grids as well (see the Appendix for expla-
nation of centered and staggered grids). Londrillo & Del Zanna
(2000) further showed that high-order CT is possible on stag-
gered grids with a radius 2 stencil. In this paper, we show that
volume-centered CT is possible on arbitrarily large stencil sizes,
with hyperresistivity, and that the resolution of this algorithm at
moderately high order approaches the theoretical maximum ex-
hibited by a spectral code.
In x 2, we discuss the specifics of the algorithm, and in x 3, we

describe test simulations that demonstrate the capabilities of CT
with high-order spatial derivatives.

2. ALGORITHMS

Our algorithm is based on a constrained-transport scheme,
plus measures to enhance the resolution and maintain stability.
High-wavenumber resolution is achieved by a combination of
high-order and tuned finite differences plus hyperdiffusivity,1 Also at Department of Astronomy, University of Virginia, Charlottesville, VA.
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and stability is achieved by Runge-Kutta time stepping and
hyperdiffusivity.

2.1. Time Stepping

A high-order time-stepping scheme for the evolution equa-
tions is essential for the stability of most algorithms. The time
update for a variable Q(t) is Q(�t) ¼ Q(0)þ�tQ�, where Q�

represents some estimate of
R
�t
0
@tQ(t) dt. One example is the

second-order Runge-Kutta scheme, which estimates Q(�t/2) �
Q(0)þ (�t/2)Q0(0) and then identifies Q� ¼ Q0(�t/2). Another
class of algorithms maintains the conservation of mass and mo-
mentum by computing fluxes through zone boundaries. Avariety
of techniques exist for time extrapolating the fluxes at t ¼ �t/2,
such as piecewise parabolic advection (Colella &Woodward 1984),
total variation diminishing (Harten 1983), Riemann solvers (Toro
1999), the method of characteristics (Stone & Norman 1992b;
Hawley & Stone 1995), andmanymore. MHD poses a challenge
to time extrapolation because there are seven or eight wavemode
characteristics, depending on the technique used for treating
magnetic divergence. In particular, the well-known method-of-
characteristics algorithm interpolates along the Alfvén character-
istic while neglecting the fast- and slow-mode characteristics.
For our simulations, we use Runge-Kutta for time extrapolation
because it does not invoke any diffusive spatial interpolations
(x 2.2) and because it automatically captures all three MHD
wavemode types. In our demonstration implementation, we use
second-order Runge-Kutta while the Pencil code (Brandenburg
&Dobler 2002) uses third-order, although either order has proven
successful.

2.2. Diffusivity

A common class of algorithms is based on momentum fluxes
that are time extrapolated with upwind spatial interpolations.
The errors from the interpolations required for these flux trans-
port algorithms produce an intrinsic diffusivity that can stabi-
lize the evolution, even in the absence of any explicit diffusive
terms. The nature and magnitude of the diffusivity have been
characterized in Zhong (1998) and Dobler et al. (2006).

Runge-Kutta time stepping, on the other hand, has no spatial
interpolations and, thus, no intrinsic diffusivity. One then gen-
erally needs an explicit stabilizing diffusivity. One has various
options for the form of this diffusivity, with Laplacian or hyper-
Laplacian typically chosen. These diffusivities have the benefit
that their magnitude is easily characterized, and the diffusive
coefficient can be tuned to have the minimum value necessary
to preserve stability. Consider:

@tV ¼ �29
2V � �49

4V þ �69
6V � �½4�9

½4�V: ð2Þ

Let the Fourier components be V̂(k); where k ¼ fkx; ky; kzg is
the wavenumber. They evolve according to

@tV̂(k) ¼ � �2k
2V̂(k)� �4 k

4V̂(k)� �6k
6V̂(k)

� �½4�(k
4
x þ k4y þ k4z )V̂(k): ð3Þ

The �2 term is the Laplacian viscosity, and the others are
higher order hyperdiffusivities. Specifically, 94 ¼ 9292, 96 ¼
929292, and 9½4� ¼ @ 4

x þ @ 4
y þ @ 4

z : They differ in that the
higher the order, the more selective they are in diffusing high-k
structure while preserving low-k structure. Equivalently stated,
high-order hyperdiffusivities erase small-scale structure with-
out affecting the larger scales. For many physical applications,
such as the turbulent magnetic dynamo, the large-scale structure

is unaffected by the nature of the small-scale diffusivity (Haugen
& Brandenburg 2004), so in these instances, the use of hyper-
diffusivity instead of Laplacian diffusivity enhances the wave-
number resolution.

The 94 operator is spherically symmetric in Fourier space,
while the9½4� operator is not. This affects the maximum possible
time step because in order to be advectively stable, the Courant
condition implies that the product jkj�tmust be less than a given
value, and so the high-k corners of the 3D Fourier cube are the
most vulnerable to advective instability. In these corners, the94

term delivers more diffusion than the 9½4� term, but with a cost
of twice as many finite-difference operations.

Hyperdiffusivity acts together with high-order finite differ-
ences to enhance the resolution of a simulation. High-order finite
differences allow structure to be finite differenced with less error,
and hyperdiffusivity allows this structure to evolve with less dis-
sipation than it would with Laplacian diffusivity.

Hyperdiffusivity can benefit the time step, as well as the res-
olution. Suppose one chooses the Laplacian term to provide the
dominant fraction of the diffusivity. One typically then evaluates
by trial and error the minimum value of �2 and the maximum
time step �t that one can get away with to maintain stability.
Once these values are chosen, the addition of a small measure
of hyperdiffusivity, small enough so as not to contribute sig-
nificantly to the total diffusivity but large enough to affect the
highest k structure, increases the maximum stable time step by
about 50%. This technique works because the highest wave-
number structure is the most vulnerable to instability, so the time
step depends most critically on the value of the diffusivity for
these wavenumbers.

One could additionally note that ‘‘maximum stable time step’’
is not sharply defined. For instance, a time step at the cusp of sta-
bility might be unstable, but only after perhaps more than 10 time
steps.Also, themaximumstable time step depends on themaximum
value of the velocity in the simulation, which is changing in time.

2.3. Magnetohydrodynamic Equations

The equations of incompressible MHD with diffusivity and
hyperdiffusivity are

@tV ¼ � V = :V þ B = :Bþ �29
2V � �49

4V � �½4�9
½4�V

þ �69
6V þ �½6�9

½6�V þ �D99 = V; ð4Þ

@tB¼: < V < B� �2J þ �49
2J � �69

4J � �2;½4�9
½4�J

� �

þ �D99 = B; ð5Þ

J ¼ : < B: ð6Þ

The variables are defined in Table 1. The magnetic equa-
tion (5) iswritten as a curl so that the constrained-transport scheme
can preserve the magnetic divergence (see Appendix). The re-
maining term proportional to �D outside of the curl has the ef-
fect of diffusing away anymagnetic divergence present, and does
nothing otherwise (x 2.4). Similarly, the term proportional to the
�D term can be used to help quell kinetic divergence in incom-
pressible simulations, although for the simulations in this paper
we use a spectral projection to accomplish this.

We clarify the meaning of equation (5) by assuming that
: = B ¼ 0:

@tB ¼ B = :V � V = :B� B: = V þ �29
2B� �49

4B

þ �69
6Bþ �2;½4�9

29½4�Bþ �D99 = B: ð7Þ
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The J terms in equation (5) are seen to have the role of diffusivities
in equation (7). In the simulations in x 3, we use equation (5) for
constrained transport and equation (7) for unconstrained transport.

Time centering of the staggered-grid and centered-grid
constrained-transport equations encounters a circumstance sim-
ilar to that with the kinetic equation. In the staggered-grid
constrained-transport configuration employed by Hawley &
Stone (1995), the electric fields are spatially interpolated from
the nearest eight velocity and magnetic field vectors, and they
are also time interpolated to the next half-step with an Alfvén
wave method-of-characteristics scheme (Hawley & Stone 1995).
The implicit diffusivity inherent in these interpolations stabilizes
the magnetic field evolution, even in the absence of explicit dif-
fusivity. For Runge-Kutta time stepping on a centered grid, there
are no spatial interpolations in constructing the electric field, and
no accompanying intrinsic diffusivity. Some form of diffusivity
is then generally required to maintain stability.

2.4. Divergence

In a constrained-transport simulation, the magnetic divergence
remains zero to machine precision. For unconstrained transport,
we set the magnetic divergence to zero with a Poisson projec-
tion in Fourier space once every four time steps. In tests, we
found that the evolution is virtually identical whether the diver-
gence is removed once every time step or once every four time
steps (Maron 2004b), and in both cases the fractional mag-
netic divergence remains below 1%. For both constrained- and
unconstrained-transport simulations of incompressible flow that
we describe below, the kinetic divergence is removed once every
time step in Fourier space, although for quasi-incompressible
flow, it suffices to do this only once every few time steps (Maron
2004b).

The divergence diffusivity term @tB ¼ �D99 = B is helpful
for reducing the effect of magnetic divergence in the time steps
between Poisson projections. It diffuses anymagnetic divergence
present, but otherwise does nothing. If each Fourier component
has the form B̂(k) ¼ B̂kk/jkj þ B̂?, then the99 = B term evolves
B̂ as @tB̂k ¼ �k 2B̂k and @tB̂? ¼ 0. The divergence diffusivity
is also helpful for a constrained-transport simulation. Without
it, CT preserves the magnetic divergence but does nothing to re-

move it. With the divergence diffusivity, any divergence present
is diffused away.

2.5. Initialization

The constrained-transport algorithm evolves the magnetic
field in such a way as to conserve magnetic divergence. If the
initial conditions have zero divergence, the divergence remains
zero indefinitely. Even if any monopoles do grow slowly, they
can be removed at negligible computational expense with a
Fourier projection, say, once every 1000 time steps. Care must
be taken with the initial conditions, however, because the di-
vergence depends on the method for approximately evaluating
derivatives. One may use, for example, a spectral or a finite-
difference divergence operator. For constrained transport to
work, the derivatives used for making the initial conditions
divergenceless must be the same as those used in the simula-
tion. Even an analytic function with vanishing divergence may
not have vanishing numerical divergence.
To initialize the magnetic field, we apply the following pro-

cedure. In three dimensions, let the wavenumbers for the mag-
netic field Fourier components B̂ be k, the length of each side of
the simulation volume be L, and the number of grid zones on
each side beN. If the magnetic divergence is defined spectrally,
then the constraint on the magnetic field is B̂(k) = k ¼ 0. For a
finite-difference derivative the constraint is slightly different. If
we use the high-order finite difference from x 2.6 (eq. [11]), we
can define an adjusted dimensionless wavenumber by

k�i ¼
XS
j¼�S

mj sin (kiLi j=Ni); ð8Þ

and then the finite-difference condition for zero divergence is

B̂(k) = k� ¼ 0: ð9Þ

The initial conditions for a constrained-transport simulation should
satisfy this condition, which is easily implemented in Fourier
space.

2.6. High-Wavenumber Finite Differences

High-order spatial derivatives can enhance the wavenumber
resolution of a simulation. To quantify this, define a function
fj(xj) on a periodic grid xj ¼ j, with j an integer. Then construct a
finite-difference derivative f 0(0) at x ¼ 0 using a radius S stencil.
The familiar result for the gradient on a radius 1 stencil is f 0(0) �
( f1 � f�1)/2, which is obtained from fitting a polynomial of
order 2 to fj at j ¼ 0. For an order 4 polynomial on a radius 2
stencil,

f 0(0) � 1

12
f�2 �

2

3
f�1 þ

2

3
f1 �

1

12
f2: ð10Þ

For a stencil of order S,

f 0(0) �
XS
j¼�S

mj fj; ð11Þ

where m�j ¼ �mj. The coefficients for a radius 3 stencil are
fm1;m2;m3g ¼ f3/4; 3/20; 1/60g.
Consider the finite-difference error at x ¼ 0 for a Fourier mode

sin (�kx). (Cosine modes can be ignored because they do not
contribute to the derivative at x ¼ 0.)We scale the wavenumber k

TABLE 1

Variables in the Equations of MHD

Symbol Definition

V ............................................. Velocity

�2 ............................................ Laplacian viscosity

�4 ............................................ Hyperviscosity for 94

�½4� .......................................... Hyperviscosity for 9 ½4�

�6 ............................................ Hyperviscosity for 96

�2;½4� ........................................ Hyperviscosity for 929 ½4�

�½6� .......................................... Hyperviscosity for 9 ½6�

�D ........................................... Divergence viscosity

B ............................................. Magnetic field

J ............................................. Current (: < B)

�2 ............................................ Laplacian resistivity

�4 ............................................ Hyperresistivity for 94

� ½4� .......................................... Hyperresistivity for 9 ½4�

�6 ............................................ Hyperresistivity for 96

�2;½4� ........................................ Hyperresistivity for 929 ½4�

�½6� .......................................... Hyperresistivity for 9 ½6�

�D ........................................... Divergence resistivity
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to grid units so that k ¼ 1 corresponds to the maximum (Nyquist)
wavenumber expressible on the grid. The finite-difference for-
mula (eq. [11]) gives

f 0k (0) � 2
XS
j¼1

mj sin (�jk); ð12Þ

whereas the correct value is k�. The spectral procedure of taking
the derivative by transforming to Fourier space and back gives the
correct value up to k ¼ 1, but at a cost of 5 log2N floating point
operations per grid point per transform, where N is the number of

grid points, whereas the finite-difference derivative (eq. [11]) on
a radius S stencil costs 3S � 1 floating point operations. Figure 1
exhibits the accuracy of finite-difference derivatives of different
orders as a function of wavenumber. The wavenumber resolution
increases with polynomial order.

The polynomial fit can be tuned by adjusting the coefficients
to enhance high-wavenumber accuracy substantially at the ex-
pense of a negligible loss of accuracy at lowwavenumbers (Maron
2004b). Table 2 gives the coefficients for finite-difference oper-
ators at various orders, along with the maximum wavenumber
for which they are 0.5% accurate. In Figure 1 we also show the
wavenumber accuracy for a radius 3 stencil using tuned coeffi-
cients, designed to have a relative precision of <0.5% for k ¼
0Y0:50. We see in x 3.1.2 that a simulation based on this tuned
radius 3 scheme performs better than a radius 4 simulation with
conventional coefficients. We note that power spectra do not
reveal a difference between turbulence simulations with tuned
and untuned coefficients, because errors in the derivativemanifest
as an advective dispersion rather than as a diffusivity. One has
instead to examine the fields in real space rather than in Fourier
space.

2.7. Dealiasing

Nonlinear terms in theMHDequations such asV = :V suffer an
aliasing error for high-wavenumber structure.Wefirst illustrate this
with a 1Dexample before treating the 3D case (Canuto et al. 1987).
Let Aj and Bj be discrete functions on a one-dimensional grid with
N ¼ 16 grid points: 1 � j � N , and with accompanying Fourier
modes in the range �N /2 � s � (N /2)� 1: The Fourier expan-
sion of A is

Aj ¼
XN=2�1

s¼�N=2

Âs exp (2�ijs=N ); ð13Þ

and similarly for Bj. Let A and B each be composed of a single
Fourier mode with s ¼ 6. The productC ¼ AB is then composed
of a single Fourier mode with s ¼ 12, but in this discrete repre-
sentation, this is equivalent to s ¼ �4. This remapping of high-
wavenumber modes to low-wavenumber modes is known as

TABLE 2

Coefficients for Finite-Difference Operations

Operation m0 m1 m2 m3 m4 m5 m6 m7 m8 kmax

@/@x (P1) ....................................... 0 0.50000 . . . . . . . . . . . . . . . . . . . . . 0.12

@/@x (P2) ....................................... 0 0.66667 �0.08333 . . . . . . . . . . . . . . . . . . 0.24

@/@x (P3) ....................................... 0 0.75000 �0.15000 0.01667 . . . . . . . . . . . . . . . 0.34

@/@x (P4) ....................................... 0 0.80000 �0.20000 0.03810 �0.00357 . . . . . . . . . . . . 0.40

@/@x (P5) ....................................... 0 0.83333 �0.23810 0.05952 �0.00992 0.00079 . . . . . . . . . 0.44

@/@x (P8) ....................................... 0 0.88889 �0.31111 0.11313 �0.03535 0.00870 �0.00155 0.00018 �0.00001 0.56

@/@x (T3) ....................................... 0 0.81796 �0.21324 0.03683 . . . . . . . . . . . . . . . 0.50

@/@x (T8) ....................................... 0 0.95951 �0.42312 0.22746 �0.12450 0.06461 �0.03004 0.01156 �0.00273 0.76

@/@x (T8) ....................................... 0 0.96685 �0.43635 0.24410 �0.14168 0.07976 �0.04148 0.01884 �0.00536 0.80

@2/@x2 (P3) .................................... �2.72222 1.5 �0.15 0.01111 . . . . . . . . . . . . . . . . . .

@4/@x4 (P3) .................................... 9.33333 �6.5 2. �0.16667 . . . . . . . . . . . . . . . . . .

@6/@x6 (P3) .................................... �20. 15. �6. 1. . . . . . . . . . . . . . . . . . .

Interpolation (P3) .......................... 0 0.58594 �0.09766 0.01172 . . . . . . . . . . . . . . . 0.35

Interpolation (T3) .......................... 0 0.60103 �0.12312 0.02214 . . . . . . . . . . . . . . . 0.50

Interpolation (T8) .......................... 0 0.63099 �0.19580 0.10149 �0.05770 0.03248 �0.01709 0.00793 �0.00233 0.80

Notes.—The column ‘‘kmax’’ indicates the maximum wavenumber for which the operator is no worse than 0.5% accurate. For the odd-order derivatives, m�j ¼ �mj,
and for the even-order derivatives as well as the interpolations, m�j ¼ mj. The interpolation coefficients are for interpolation to a point halfway between two grid zones
using the nearest S grid points on each side (x 2.8).

Fig. 1.—Accuracy offinite-difference derivatives as a function of theNyquist-
scaled wavenumber k. ‘‘Polynomial-N ’’ denotes a radius N stencil with poly-
nomial-based coefficients, and ‘‘Tuned-N ’’ denotes a radius N stencil with tuned
coefficients (x 2.6 and Table 2). The ‘‘Exact’’ curve is the derivative as evaluated
by a Fourier transform. A radius N stencil with polynomial-based coefficients is
accurate to order 2N.
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aliasing error. Note that s ¼ 6 is within the Nyquist limit of
jsj � N /2, while the product mode s ¼ 12 is not. While Aj and
Bj might be resolvable on the grid, their product need not be.
This can be fixed by truncating before and after the product all
modes outside jsj � N /3 to ensure that no modes in the product
will exceed the Nyquist limit. A spectral code can make this
truncation because the fields are in Fourier space, while a finite-
difference code cannot. As a practical matter it suffices to set the
diffusivities high enough so that negligible structure exists out-
side the N /3 aliasing limit.

Alternatively, the aliasing problem can be remedied with a
staggered-grid correction (Canuto et al. 1987), and then the trun-
cation is not necessary. In addition, this allows us to simulate
structure beyond k ¼ 2

3
. We first exhibit this procedure in 1D and

then extend it to 3D below. To implement the staggered-grid
correction, first construct the usual product Cj ¼ AjBj. Then in-
terpolate the centered grids Aj and Bj to the staggered grids Ajþ1/2
and Bjþ1/2, multiply to produce Cjþ1/2, and transform back to the
centered grid C 0j . Finally, combine the centered and staggered
results asCj  (Cj þ C 0j )/2. This result is free from aliasing error
for all Fourier modes, so no Fourier-space truncation is necessary.
In Fourier space, the fields on the staggered grid can be computed
exactly by applying a phase shift to each Fourier mode. A finite-
difference scheme can accomplish this with the high-order inter-
polation discussed in x 2.8.

In three dimensions the aliasing error can be eliminated
by truncating the Fourier modes outside jsj< N/3, where s ¼
fsx; sy; szg and N ¼ fNx;Ny;Nzg. The grid-shift correction is
more complicated. Seven grid shifts are needed to completely
correct the error, but it is more efficient to settle for a more
limited correction involving just one shift (Canuto et al. 1987).
Interpolate A and B to the staggered grid f jx þ 1/2; jy þ 1/2; jz þ
1/2g, multiply, return to the centered grid f jx; jy; jzg, and as in the
one-dimensional case, average the result with the product carried
out on the original centered grid. This yields an alias-free result
if accompanied by a Fourier truncation of all modes outside
jsj <

ffiffiffi
3
p

N/2, which is 94% of the Nyquist limit. For a finite-
difference code, the diffusivity can be set to minimize the en-
ergy outside the truncation zone. When the three-dimensional,
staggered-grid, aliasing correction is combined with high-order,
volume-centered, constrained-transport, magnetic divergence is
still preserved to machine precision. This scheme uses the high-
order finite differences and interpolations discussed in xx 2.6
and 2.8.

2.8. Interpolation

High-order interpolation allows implementation of the stag-
gered aliasing correction discussed in x 2.7. It can also be used
for doubling the grid size. In this case, the new points in the
doubled three-dimensional grid can be generated with a set of
interpolations along and diagonal to the three grid axes. Dou-
bling the grid is also useful for interpolating to points that are
not exactly halfway between grid points. For example, the grid
can be doubledwith the high-order interpolation discussed above,
and then a simpler algorithm can be used to further interpolate to
a point anywhere within the refined grid. We used this technique
to trace the path of magnetic field lines in our studies of cosmic-
ray diffusion (Maron 2004a), and also for doubling the resolu-
tion of turbulent dynamo simulations in Maron et al. (2004).
Last, we have found that high-order tuned derivatives and inter-
polations are useful for postsimulation analysis of time slice data
without the need for computationally expensive fast Fourier
transforms.

A high-order interpolation to a point halfway between two
grid points can be accomplished with

fjþ1=2 ¼
XS
i¼1

mi( fjþi þ fjþ1�i): ð14Þ

The error in the interpolation as a function of wavenumber can be
calculated by applying equation (14) to a cosine mode centered
on fjþ1/2: fi ¼ cos f�k½i� ( jþ 1

2
)�g. The interpolated value is

f �jþ1=2 ¼
XS
i¼1

mj cos (�ik); ð15Þ

whereas the correct value is fjþ1/2 ¼ 1. Table 2 gives coefficients
for an interpolation based on a radius 3 stencil from a polynomial
fit to fj, in the row labeled ‘‘Interpolation (P3).’’ Tuning the co-
efficients can improve the wavenumber resolution of the inter-
polation in a manner similar to that done for the derivative. Tuned
coefficients for radius 3 and 8 stencils are given in Table 2 in the
rows labeled T3 and T8, with the column labeled kmax giving
the maximum wavenumber for which the interpolation is 0.5%
accurate.

2.9. Operation Count

A finite-difference derivative on a radius S stencil costs S
multiplies and 2S � 1 adds. Since add and multiply units tend
to come in pairs on most modern machines, this is effectively
4S � 2 floating point operations per grid cell. A code with F
finite-difference convolutions per time step involves F(4S � 2)
floating point operations.
The computation cost per time step scales as the number of

derivatives computed per grid element per time update. For con-
strained transport, one needs to calculate three derivatives for
@i�, three for @ie, nine for @iVj, six for: < B, and six for: < E.
Diffusion terms such as 92V and 92J are not included in the
tally because they need only be applied every few time steps
(Maron 2004b). The same is true for the Fourier-space Poisson
projection to make the fields divergenceless. Maron (2004b)
found that the results were effectively identical whether these
terms were applied once every time step or once every four time
steps.
In Table 3 we list the number of derivatives computed per

time step for various classes of algorithms. Pencil is a vector
potential code (Brandenburg & Dobler 2002) that calculates J
directly from A to take advantage of the cache memory. This
involves 15 distinct two-level derivatives computed from a 2D
stencil. For a radius S finite difference, a 2D derivative involves
4S 2 � 1 adds, compared to 2S � 1 adds for a conventional 1D
derivative. We do not consider multiplies because they are al-
ways less numerous than adds, and because CPUs tend to feature
add and multiply units in pairs. As a result, a 2D derivative cor-
responds to 2S þ 1 times the computational effort of a con-
ventional 1D derivative. Thus, the calculation of J with S ¼ 3
corresponds effectively to about 105 conventional derivatives.
Alternatively, a vector potential algorithm can instead calculate
B from A and then J from B in separate stages, at a possible cost
of extra memory latency. In Table 3, we denote a vector potential
algorithm that calculates J directly from A as ‘‘1-stage’’ and a
vector potential algorithm that calculates B from A and then J
from B as ‘‘2-stage.’’ The constrained-transport algorithm evolves
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V andB according to equations (4) and (5), and the unconstrained-
transport algorithm evolves V and B according to equations (4)
and (7). The spectral algorithm computes 15 Fourier transforms
instead of derivatives and thus does not directly compare with
the finite-difference codes.

A vector potential code such as Pencil can be adapted to the
algorithm described here by substituting equation (5) for the
vector potential equation and by changing the finite-difference
coefficients from the polynomial-based values to the tuned val-
ues. This allows one to compute boundary conditions using the
magnetic field instead of the vector potential. However, there is
an extra round of interprocessor communication associated with
calculating J from B and then applying the curl.

A convenient unit for execution speed is kiloYgrid elements
per CPU gigaflops per second (KEGS). A constrained-transport
code with a radius 3 stencil and two Runge-Kutta steps per time
step would run ideally at a speed of 1850 KEGS. The actual
speed is slower, of course, because of overhead and because the
finite-difference convolutions do not run at the peak floating
point speed. In benchmarks, we have observed that the Pencil
code, which has three Runge-Kutta stages, runs at a speed of
around 100 KEGS for serial operation and 50 KEGS for mas-
sively parallel operation. For comparison, the highly optimized
spectral MHD code Tulku (Maron & Goldreich 2001) has a
speed of around 80 KEGS in serial and 40 KEGS in parallel
(Maron 2004b).

3. SIMULATIONS

3.1. The Turbulent Nonhelical Dynamo

Our first test model is the turbulent, nonhelical, MHD dynamo
(Batchelor 1950), which is themagnetic analog of theKolmogorov
cascade for hydrodynamic turbulence. The Kolmogorov cascade
is the long-term, steady state of hydrodynamic turbulence that is
forced at the large scale and dissipated by viscosity at the small
scale, and it has an energy spectrum of E(k) � k�5/3. The non-
helical MHD dynamo has the same setup but includes a spatially
homogeneous magnetic field with unit magnitude and zero mean.
Maron et al. (2004) found that the steady state of this system has a
kinetic energy spectrum of E(k) / k�2, where the energy is dom-
inantly in large-scale eddies, and a magnetic spectrumwith the en-
ergy predominantly in the smallest scale (resistive-scale) magnetic
structures. The kinetic andmagnetic spectra are shown in Figure 2.

3.1.1. Models

We ran a set of simulations of forced homogeneous MHD
turbulence (Table 4) with and without constrained transport and
at various spatial orders to test the effectiveness of high-order
constrained transport. Each simulation has the same time step,
viscosity, and resistivity. The grid used in all cases has 643 zones
covering a periodic unit cube. The forcing power, density, initial
rms velocity, and magnetic field are all unity, and they remain so
in the long-term steady state.

TABLE 3

The Number of Derivatives Computed per Time Update (See x 2.9)

Algorithm Terms Derivatives

Constrained transport ................................................. @i�, @ie, @iVj, : < B, : < E 27

Unconstrained transport ............................................. @i�, @ie, @iVj, @iBj, @i(: = B) 30

2-stage vector potential.............................................. @i�, @ie, @iVj, : < A, : < B 27

1-stage vector potential (Pencil ) ............................... @i�, @ie, @iVj, : < A, : < : < A 120

Spectral....................................................................... 15 Fourier transforms N/A

Fig. 2.—(a) Kinetic (V ) andmagnetic (B) spectra for a set of simulationswith identical initial conditions, after 2 crossing times. (b) Value of By along a grid line parallel
to the x-axis after 0.4 crossing times, for the same set of simulations. The high-order constrained and unconstrained-transport simulations (CT3, CT8, and UT8) more
closely resemble each other than they do the low-order constrained-transport simulations (CT1 and CT2).
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The initial state is the same for all simulations. It was taken
from a simulation of forced magnetized turbulence (x 3.1) in
the long-term steady state. The magnetic divergence is zero in
Fourier space: B̂(k) = k ¼ 0. The initial state wasmodified slightly
for the constrained-transport simulations to make it magnetically
divergenceless according to the finite-difference derivative (x 2.5).
This amounts to a very small adjustment in the fields, much
less than the difference between the fields after 1 crossing time of
evolution.

Constrained transport needs some form of diffusivity, either
Laplacian or hyperdiffusivity, to maintain stability. With diffu-
sivity, it is stable indefinitely, whereas it is unstable without it. To
establish this, we evolved the MHD equations with constrained
transport for 10 crossing times stably. The diffusivities used in
these models are Laplacian viscosity �2 ¼ 10�3, hyperviscosity
�½4� ¼ 2:5 ; 10�8, and hyperresistivity �2;½4� ¼ 7 ; 10�12, which
we empirically find are the minimum values that maintain stabil-
ity for Vrms ¼ Brms ¼ 1 on a 643 grid. Expressed in dimension-
less form: �n ¼ �n/(Vrmsdx

n�1) and �n ¼ �n/(Vrmsdx
n�1); these

are �2 ¼ 0:064, �½4� ¼ 6:6 ; 10�3, and �2;½4� ¼ 7:5 ; 10�3:
The forcing is the same as used byMaron et al. (2004). A ran-

dom forcing field is added to the velocity every time step. The
spectrum of the forcing field is k�5/3, truncated 2.5 lattice units
from the origin in Fourier space, and the Fourier components
have random phases. The forcing power, simulation volume,
and density are unity, which yields rms velocity and magnetic
fields of order unity (Maron 2004b).

3.1.2. Results

The diffusivities are given in x 3. We plot the kinetic and
magnetic spectra in Figure 2a. The spectra are very similar for
constrained- and unconstrained-transport simulations, and also
for different orders. However, the spectra alone do not distin-
guish between simulations of different orders because an error in
the derivative manifests itself as an advective dispersion rather
than as a diffusivity (x 2.6). One instead has to examine the fields
in real space.

In Figure 2b, we compare the magnetic fields at t ¼ 0:4
crossing times. For the comparison, we examine the difference
between the fields integrated over space by computing the L2
norm between simulations i and j:

A2
ij ¼

R
½By(i)� By( j)�2 d(Vol)R

By(i)
2 d(Vol)þ

R
By( j)

2 d(Vol)
: ð16Þ

Stone et al. (1992a) argue that this kind of comparison is more
meaningful than merely plotting the overlay of both fields. The
constrained-transport simulation with polynomial-based finite
differences on a radius 8 stencil (CT8 in Table 4) serves as the
basis of comparison. We compare the constrained-transport sim-
ulations to an unconstrained-transport simulation on a radius
8 tuned finite-difference stencil (UT8). We use UT8 as a stand-
in for the spectral algorithm because of its high-wavenumber
resolution.
The spectral algorithm delivers the highest attainable reso-

lution because spectral derivatives are exact for all wavenum-
bers. With this, a 3D spectral simulation without an aliasing
grid-shift correction can resolve structure up to k ¼ 2

3
, and with

a grid-shift correction it can resolve up to k ¼ 0:94 (Canuto
et al. 1987). The spectral algorithm can also set the magnetic
divergence to zero in Fourier space at negligible cost. Uncon-
strained transport does not explicitly conserve magnetic diver-
gence, so in model UT8 the divergence is cleaned with a Fourier
projection every time step. We also tried applying the correction
every fourth time step and with virtually identical results. The
radius 8 stencil of UT8 yields derivatives that are accurate up to
k ¼ 0:56.
The L2 norms given in Table 2 show how the simulations pro-

gressively approach the CT8 result as the stencil size increases.
The match is poor for CT1 and better for CT3. We also note that
the radius 3 simulation with tuned derivatives (CT3t) performs
better than the radius 4 simulation with polynomial-based deriv-
atives, establishing the effectiveness of tuned derivatives. This
can also be qualitatively seen in Figure 2, where we see that the
fields for CT8 and UT8 are closely aligned (Fig. 2) and that they
also closely resemble those for CT3.
We attribute the remaining differences between CT8 and UT8

to the fact that the magnetic divergence is removed spectrally in
UT8, while it is handled by constrained transport in CT8. Collec-
tively, the high-order constrained- and unconstrained-transport
simulations (CT3, CT8, and UT8) more closely resemble each
other than they do the low-order constrained-transport simu-
lations (CT1 and CT2). We conclude that CT3 is already a good
approximation to the spectral algorithm.

3.2. Comparison of the Constrained-Transport
and Vector Potential Techniques

We adapted the vector potential code Pencil to run in CTmode
and used it to compare the vector potential and CT techniques.
We ran an Alfvén wave on a 323 grid with zero viscosity and

TABLE 4

Index of Simulations

Tag Method Stencil Radius Finite-Difference Technique kmax L2 Norm

CT1 ............................ Constrained transport 1 Polynomial 0.12 0.561

CT2 ............................ Constrained transport 2 Polynomial 0.24 0.193

CT3 ............................ Constrained transport 3 Polynomial 0.34 0.083

CT4 ............................ Constrained transport 4 Polynomial 0.40 0.042

CT5 ............................ Constrained transport 5 Polynomial 0.44 0.023

CT8 ............................ Constrained transport 8 Polynomial 0.56 0

CT3t1 ......................... Constrained transport 3 Tuned 0.50 0.034

CT3t2 ......................... Constrained transport 3 Tuned 0.52 0.037

UT8 ............................ Unconstrained transport 8 Polynomial 0.56 0.267

Notes.—CT and UT denote constrained and unconstrained transport. The column labeled ‘‘Finite-Difference Technique’’ specifies whether
the finite-difference coefficients are from a polynomial fit or if they have been tuned to enhance high-wavenumber accuracy (x 2.6). Here kmax

denotes the largest wavenumber for which derivatives are 0.5% accurate. The L2 norms are takenwith respect to UT8, as discussed in x 3.1.2. The
simulations with tuned coefficients are CT3t1, which has kmax set to 0.50, and CT3t2, which has kmax set to 0.52.
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resistivity (Fig. 3). After 10 crossing times, both the vector
potential and CT techniques yield wave profiles that agree with
each other to within 1%. The shapes of the profiles are also well
matched with the initial conditions, with a phase error of 10%.

We also used both techniques to run a turbulent dynamo sim-
ulation. We started with an initially weak magnetic field in the
form of a Beltrami wave and applied helical forcing until it grew
to a steady state. The box size is (2�)3, the density is unity, the
forcing power is equal to 0.07, the viscosity is equal to 5 ; 10�3,
and the resistivity is equal to 5 ; 10�3. The rms magnetic field
strength is plotted in Figure 4. After 30 crossing times, the values
for Brms for the CT and vector potential techniques agree to 1%
(Fig. 4).

3.3. Oblique Alfvén Wave Test

We ran an Alfvén wave test where the propagation axis is
oblique to the grid axes, with the initial conditions in Gardiner
& Stone (2005):

V ¼ f0; 0:1 sin (2�xþ 4�y); 0:1 cos (2�xþ 4�y)g; ð17Þ

B ¼ f1; 0:1 sin (2�xþ 4�y); 0:1 cos (2�xþ 4�y)g: ð18Þ

The simulation volume is a unit cube, modeled on a grid of size
163. The velocity field is quasi-incompressible, with the diver-

gence removed spectrally every four time steps. The kinetic and
magnetic diffusivities are all set to zero for this linear problem.
We ran two simulations: one with third-order polynomial finite
differences and another with third-order tuned finite differences
from Table 2. After the wave has traveled 16 times around the
periodic box, the waveform remains almost indistinguishable
from the initial conditions, with the tuned finite differences
yielding a more precise result than the polynomial finite differ-
ences (Fig. 5).

4. SUMMARY

We have developed a new version of the constrained-transport
algorithm that uses volume-centered fields and hyperresistivity on
a high-order finite-difference stencil, with tuned finite-difference
coefficients to enhance high-wavenumber resolution. High-order
interpolation allows implementation of staggered dealiasing.

Fig. 3.—Alfvén wave profile after 10 crossing times, with (a) the Pencil code using the vector potential form of the induction equation and (b) using CT (x 3.2). Alfvén
units denote the fluctuating field strengths compared to the uniform component of the magnetic field.

Fig. 4.—We plot the rms magnetic field strength for a turbulent dynamo sim-
ulation using the Pencil code in vector potential and CT mode (x 3.2). Both tech-
niques agree to 1% after 30 crossing times.

Fig. 5.—Oblique Alfvén wave test from x 3.3. We plot the Bz field as a
function of y, with x and z equal to zero. We show initial conditions ( filled points),
and results from simulations with polynomial finite differences (open circles) and
tuned finite differences (crosses). In each simulation, the grid size is 163 and the
wave has traveled 16 times around the periodic box. The tuned finite differences
yield a more precise result.
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Together, these measures yield a wavenumber resolution that
approaches the ideal value achieved by the spectral algorithm.

Volume-centered fields are desirable because then V, B, and
E all reside at the same grid location, allowing E to be con-
structed directly from the cross product of V and B without
interpolation. For staggered fields, V and B reside at the zone
faces and E on the edges, and so constructing E involves spatial
interpolation, which reduces wavenumber resolution.

High-order stencils and tuned finite-difference coefficients
both enhance the wavenumber resolution of finite differences.
For a radius 3 stencil with tuned coefficients, derivatives can be
computed to a relative precision of 0.5% up to a Nyquist-scaled
wavenumber of k ¼ 0:5. Without tuning, this would be k ¼ 0:34
for a radius 3 stencil. A radius 1 stencil derivative such as is used
in Zeus (Stone&Norman 1992b) is only accurate up to k ¼ 0:12.
The spectral derivative is precise up to k ¼ 1:00, although in
practice it is limited to k ¼ 0:94 because of aliasing. Aliasing lim-
its a finite-difference code to k ¼ 0:66 unless the finite-difference
grid shift aliasing correction is used (x 2.7).

Hyperresistivity is desirable because it is more effective than
Laplacian resistivity in diffusing high-wavenumber modes while
at the same time preserving low-wavenumber modes. The fact
that hyperresistivity can be written as a curl allows its inclusion

into CT. If Laplacian diffusivity were used instead, too much
high-wavenumber structure would be diffused for the high-order
or tuned derivatives to matter.
The resolution of the algorithm described here approaches

that of a spectral code, but because it uses finite differences, it
runs faster than a spectral code and is not restricted to periodic
boundary conditions. In addition, since the finite differences are
local, it is easily scalable to thousands of processors. The spec-
tral algorithm is more difficult to scale to large numbers of pro-
cessors because it involves all-to-all communications between
processors. A finite-difference code only passes information be-
tween processors whose subgrids are adjacent in physical space.
Last, because the code works with the magnetic field rather
than the vector potential, boundary conditions are often easier
to implement.
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ing discussionswith E. Blackman,A. Brandenburg, B. Chandran,
and J. Stone, as well as a very thorough and helpful referee report.

APPENDIX

Constrained transport expresses the magnetic induction equation as a pure curl plus a divergence diffusivity: @tB ¼ : < Fþ
�D99 = B; where F is defined in equation (5). The �D term serves to diffuse away magnetic divergence, and the finite differences are
arranged so that: = : < F ¼ 0: Thus, the curl term does not contribute to the evolution of the magnetic divergence, and if the initial
conditions are divergence-free, the magnetic divergence remains zero throughout the evolution.

To see how constrained transport works, denote the vector field byFi; j; k ¼ fFx
i; j; k ;F

y
i; j; k ;F

z
i; j; kg;where fi; j; kg are integers specifying

the locations of grid cell centers. There are two basic grid types: ‘‘centered’’ and ‘‘staggered’’ (Fig. 6). For a centered grid, scalar and vector
quantities are located at cell centers. For a staggered grid, scalar quantities are located at cell centers and vector quantities at cell faces. For
instance, we would index the components of F as fF x

iþ1/2; j; k ;F
y
i; jþ1/2; k ;F

z
i; j; kþ1/2g:

The divergence of the curl of F is : = : < F ¼ �ijk@i@jFk ; which consists of terms such as (@1@2 � @2@1)Fk : One can straightfor-
wardly see that this is zero for finite differences of the form of equation (11) for both centered and staggered grids. Thus, constrained
transport can be coordinated with high-order and tuned finite differences, as well as with hyperresistivity.

For a staggered grid, the ‘‘F’’ vectors are located at cell edges, whereas theV andB vectors fromwhich they are constructed are found
at cell faces. A staggered grid CT scheme therefore involves spatial interpolation, one example being the method-of-characteristics
scheme for time interpolating Alfvén waves. We use volume-centered fields and Runge-Kutta time stepping because, among other rea-
sons, no interpolation is required.

Fig. 6.—Configuration for zone-centered and zone-staggered fields in two dimensions, where the generalization to three dimensions is straightforward. Left: Zone-
centered vector field, where both the X̂ and Ŷ vectors reside at zone centers. Right: Zone-staggered vector field, where X̂ vectors reside on X̂ faces and Ŷ vec-
tors reside on Ŷ faces.
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